scispace - formally typeset
Search or ask a question
Author

Jens S. Svenningsen

Bio: Jens S. Svenningsen is an academic researcher from University of Copenhagen. The author has contributed to research in topics: Internal medicine & Endocrinology. The author has an hindex of 5, co-authored 7 publications receiving 78 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Divergent effects of EE and RE on circulating concentrations of the BA species, FGF19, and FGF21 are revealed and temporal relationships between decreased BA and F GF19 following RE and a sharp disparity in FGF 21 concentrations are identified.
Abstract: BACKGROUND. Exercise has profound pleiotropic health benefits, yet the underlying mechanisms remain incompletely understood. Endocrine FGF21, bile acids (BAs), and BA-induced FGF19 have emerged as metabolic signaling molecules. Here, we investigated if dissimilar modes of exercise, resistance exercise (RE) and endurance exercise (EE), regulate plasma BAs, FGF19, and FGF21 in humans. METHODS. Ten healthy, moderately trained males were enrolled in a randomized crossover study of 1 hour of bicycling at 70% of VO2peak (EE) and 1 hour of high-volume RE. Hormones and metabolites were measured in venous blood and sampled before and after exercise and at 15, 30, 60, 90, 120, and 180 minutes after exercise. RESULTS. We observed exercise mode–specific changes in plasma concentrations of FGF19 and FGF21. Whereas FGF19 decreased following RE (P < 0.001), FGF21 increased in response to EE (P < 0.001). Total plasma BAs decreased exclusively following RE (P < 0.05), but the composition of BAs changed in response to both types of exercise. Notably, circulating levels of the potent TGR5 receptor agonist, lithocholic acid, increased with both types of exercise (P < 0.001). CONCLUSION. This study reveals divergent effects of EE and RE on circulating concentrations of the BA species, FGF19, and FGF21. We identify temporal relationships between decreased BA and FGF19 following RE and a sharp disparity in FGF21 concentrations, with EE eliciting a clear increase parallel to that of glucagon. FUNDING. The Novo Nordisk Foundation (NNF17OC0026114) and the Lundbeck Foundation (R238-2016-2859).

67 citations

Journal ArticleDOI
Marie Warrer Munch1, Tine Sylvest Meyhoff1, Marie Helleberg1, Maj Brit Nørregaard Kjær1, Anders Granholm1, Carl Johan Steensen Hjortsø1, Thomas Steen Jensen1, Morten Hylander Møller1, Peter Buhl Hjortrup1, Mik Wetterslev1, Gitte Kingo Vesterlund1, Lene Russell1, Vibeke Lind Jørgensen1, Klaus Tjelle Kristiansen2, Thomas Benfield2, Charlotte Suppli Ulrik2, Anne Sofie Andreasen1, Morten H. Bestle1, Morten H. Bestle2, Lone Musaeus Poulsen, Thomas Hildebrandt, Lene Surland Knudsen, Anders Pape Møller, Christoffer Sølling, Anne Craveiro Brøchner, Bodil Steen Rasmussen3, Henrik Nielsen3, Steffen Christensen4, Thomas Strøm5, Maria Cronhjort6, Rebecka Rubenson Wahlin6, Stephan M. Jakob7, Luca Cioccari7, Balasubramanian Venkatesh8, Naomi E Hammond8, Vivekanand Jha9, Vivekanand Jha10, Vivekanand Jha11, Sheila Nainan Myatra12, Marie Qvist Jensen1, Jens Wolfgang Leistner1, Vibe Sommer Mikkelsen1, Jens S. Svenningsen1, Signe Bjørn Laursen1, Emma Victoria Hatley1, Camilla Meno Kristensen1, Ali Al-Alak2, Esben Clapp2, Trine Bak Jonassen2, Caroline Løkke Bjerregaard2, Niels Christian Haubjerg Østerby2, Mette Mindedahl Jespersen2, Dalia Abou-Kassem1, Mathilde Languille Lassen1, Reem Zaabalawi, Mohammed Mahmoud Daoud, Suhayb Abdi, Nick Meier1, Kirstine la Cour, Cecilie Bauer Derby, Birka Ravnholt Damlund, Jens Laigaard, Lene Lund Andersen, Johan Mikkelsen, Jeppe Lundholm Stadarfeld Jensen, Anders Hørby Rasmussen, Emil Arnerlöv, Mathilde Lykke, Mikkel Zacharias Bystrup Holst-Hansen4, Boris Wied Tøstesen4, Janne Schwab13, Janne Schwab4, Emilie Kabel Madsen4, Christian Gluud2, Christian Gluud14, Theis Lange1, Anders Perner1 
TL;DR: The COVID STEROID trial as discussed by the authors evaluated the effects of low-dose hydrocortisone on patient-centred outcomes in adults with COVID-19 and severe hypoxia.
Abstract: Background In the early phase of the pandemic, some guidelines recommended the use of corticosteroids for critically ill patients with COVID-19, whereas others recommended against the use despite lack of firm evidence of either benefit or harm. In the COVID STEROID trial, we aimed to assess the effects of low-dose hydrocortisone on patient-centred outcomes in adults with COVID-19 and severe hypoxia. Methods In this multicentre, parallel-group, placebo-controlled, blinded, centrally randomised, stratified clinical trial, we randomly assigned adults with confirmed COVID-19 and severe hypoxia (use of mechanical ventilation or supplementary oxygen with a flow of at least 10 L/min) to either hydrocortisone (200 mg/d) vs a matching placebo for 7 days or until hospital discharge. The primary outcome was the number of days alive without life support at day 28 after randomisation. Results The trial was terminated early when 30 out of 1000 participants had been enrolled because of external evidence indicating benefit from corticosteroids in severe COVID-19. At day 28, the median number of days alive without life support in the hydrocortisone vs placebo group were 7 vs 10 (adjusted mean difference: -1.1 days, 95% CI -9.5 to 7.3, P = .79); mortality was 6/16 vs 2/14; and the number of serious adverse reactions 1/16 vs 0/14. Conclusions In this trial of adults with COVID-19 and severe hypoxia, we were unable to provide precise estimates of the benefits and harms of hydrocortisone as compared with placebo as only 3% of the planned sample size were enrolled. Trial registration ClinicalTrials.gov: NCT04348305. European Union Drug Regulation Authorities Clinical Trials (EudraCT) Database: 2020-001395-15.

29 citations

Journal ArticleDOI
TL;DR: An engineered mouse model harboring a single-amino acid substitution in FAAH (S268D) that selectively disrupts NAT, but not NAE, hydrolytic activity is developed, suggesting that NATs act as a class of lipid messengers that improve postprandial glucose regulation and may have potential as investigational metabolites to modify metabolic disease.
Abstract: Fatty acid amide hydrolase (FAAH) degrades 2 major classes of bioactive fatty acid amides, the N-acylethanolamines (NAEs) and N-acyl taurines (NATs), in central and peripheral tissues. A functional polymorphism in the human FAAH gene is linked to obesity and mice lacking FAAH show altered metabolic states, but whether these phenotypes are caused by elevations in NAEs or NATs is unknown. To overcome the problem of concurrent elevation of NAEs and NATs caused by genetic or pharmacological disruption of FAAH in vivo, we developed an engineered mouse model harboring a single-amino acid substitution in FAAH (S268D) that selectively disrupts NAT, but not NAE, hydrolytic activity. The FAAH-S268D mice accordingly show substantial elevations in NATs without alterations in NAE content, a unique metabolic profile that correlates with heightened insulin sensitivity and GLP-1 secretion. We also show that N-oleoyl taurine (C18:1 NAT), the most abundant NAT in human plasma, decreases food intake, improves glucose tolerance, and stimulates GPR119-dependent GLP-1 and glucagon secretion in mice. Together, these data suggest that NATs act as a class of lipid messengers that improve postprandial glucose regulation and may have potential as investigational metabolites to modify metabolic disease.

20 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identified in bile a class of hypotriglyceridemic omega-3 fatty acid-derived N-acyl taurines (NATs) that increased to concentrations similar to those of steroidal bile acids.
Abstract: Omega-3 fatty acids from fish oil reduce triglyceride levels in mammals, yet the mechanisms underlying this effect have not been fully clarified despite the clinical use of omega-3 ethyl esters to treat severe hypertriglyceridemia and reduce cardiovascular disease risk in humans. Here we identified in bile a class of hypotriglyceridemic omega-3 fatty acid-derived N-acyl taurines (NATs) that, after dietary omega-3 fatty acid supplementation, increased to concentrations similar to those of steroidal bile acids. The biliary docosahexaenoic acid (DHA) containing NAT, C22:6 NAT, was increased in human and mouse plasma after dietary omega-3 fatty acid supplementation and potently inhibited intestinal triacylglycerol hydrolysis and lipid absorption. Supporting this observation, genetic elevation of endogenous NAT levels in mice impaired lipid absorption, while selective augmentation of C22:6 NAT levels protected against hypertriglyceridemia and fatty liver. When administered pharmacologically, C22:6 NAT accumulated in bile and reduced high fat diet-induced, but not sucrose-induced, hepatic lipid accumulation in mice, suggesting that C22:6 NAT was a negative feedback mediator that limited excess intestinal lipid absorption. Thus, biliary omega-3 NATs may contribute to the hypotriglyceridemic mechanism of action of fish oil and could influence the design of more potent omega-3 fatty acid-based therapeutics.

16 citations

Journal ArticleDOI
TL;DR: Bile flow is markedly altered after Roux-en-Y gastric bypass resulting in changes in plasma concentrations of bile acids and FGF-19, whereas bile flow and plasma concentrations are largely unaltered after SG.
Abstract: Bile acids in plasma are elevated after bariatric surgery and may contribute to metabolic improvements, but underlying changes in bile flow are poorly understood. We assessed bilio-enteric flow of bile and plasma bile concentrations in individuals with Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) surgery compared with matched non-surgical controls (CON). Fifteen RYGB, 10 SG and 15 CON underwent 99Tc-mebrofenin cholescintigraphy combined with intake of a high-fat 111In-DTPA-labelled meal and frequent blood sampling. A 75Se-HCAT test was used to assess bile acid retention. After RYGB, gallbladder filling was decreased (p = 0.045 versus CON), basal flow of bile into the small intestine increased (p = 0.005), bile acid retention augmented (p = 0.021) and basal bile acid plasma concentrations elevated (p = 0.009). During the meal, foods passed unimpeded through the gastric pouch resulting in almost instant postprandial mixing of bile and foods, but the postprandial rise in plasma bile acids was brief and associated with decreased overall release of fibroblast growth factor-19 (FGF-19) compared with CON (p = 0.033). After SG, bile flow and retention were largely unaltered (p > 0.05 versus CON), but gastric emptying was accelerated (p < 0.001) causing earlier mixture of bile and foods also in this group. Neither basal nor postprandial bile acid concentrations differed between SG and CON. Bilio-enteric bile flow is markedly altered after RYGB resulting in changes in plasma concentrations of bile acids and FGF-19, whereas bile flow and plasma concentrations are largely unaltered after SG.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is indicated that human BAT metabolic activity can be increased after chronic pharmacological stimulation with mirabegron and support the investigation of β3-AR agonists as a treatment for metabolic disease.
Abstract: BACKGROUNDMirabegron is a β3-adrenergic receptor (β3-AR) agonist approved only for the treatment of overactive bladder. Encouraging preclinical results suggest that β3-AR agonists could also improve obesity-related metabolic disease by increasing brown adipose tissue (BAT) thermogenesis, white adipose tissue (WAT) lipolysis, and insulin sensitivity.METHODSWe treated 14 healthy women of diverse ethnicities (27.5 ± 1.1 years of age, BMI of 25.4 ± 1.2 kg/m2) with 100 mg mirabegron (Myrbetriq extended-release tablet, Astellas Pharma) for 4 weeks in an open-label study. The primary endpoint was the change in BAT metabolic activity as measured by [18F]-2-fluoro-d-2-deoxy-d-glucose (18F-FDG) PET/CT. Secondary endpoints included resting energy expenditure (REE), plasma metabolites, and glucose and insulin metabolism as assessed by a frequently sampled intravenous glucose tolerance test.RESULTSChronic mirabegron therapy increased BAT metabolic activity. Whole-body REE was higher, without changes in body weight or composition. Additionally, there were elevations in plasma levels of the beneficial lipoprotein biomarkers HDL and ApoA1, as well as total bile acids. Adiponectin, a WAT-derived hormone that has antidiabetic and antiinflammatory capabilities, increased with acute treatment and was 35% higher upon completion of the study. Finally, an intravenous glucose tolerance test revealed higher insulin sensitivity, glucose effectiveness, and insulin secretion.CONCLUSIONThese findings indicate that human BAT metabolic activity can be increased after chronic pharmacological stimulation with mirabegron and support the investigation of β3-AR agonists as a treatment for metabolic disease.TRIAL REGISTRATIONClinicaltrials.gov NCT03049462.FUNDINGThis work was supported by grants from the Intramural Research Program of the NIDDK, NIH (DK075112, DK075116, DK071013, and DK071014).

172 citations

Journal ArticleDOI
TL;DR: This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.
Abstract: Over the past two decades, bile acids (BAs) have become established as important signaling molecules that enable fine-tuned inter-tissue communication from the liver, their site of production, over the intestine, where they are modified by the gut microbiota, to virtually any organ, where they exert their pleiotropic physiological effects. The chemical variety of BAs, to a large extent determined by the gut microbiome, also allows for a complex fine-tuning of adaptive responses in our body. This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.

134 citations

Journal ArticleDOI
09 Nov 2021-JAMA
TL;DR: In this article, the effects of 12 mg vs 6 mg/d of dexamethasone in patients with COVID-19 and severe hypoxemia were evaluated in a randomized clinical trial at 26 hospitals in Europe and India.
Abstract: Importance: A daily dose with 6 mg of dexamethasone is recommended for up to 10 days in patients with severe and critical COVID-19, but a higher dose may benefit those with more severe disease. Objective: To assess the effects of 12 mg/d vs 6 mg/d of dexamethasone in patients with COVID-19 and severe hypoxemia. Design, Setting, and Participants: A multicenter, randomized clinical trial was conducted between August 2020 and May 2021 at 26 hospitals in Europe and India and included 1000 adults with confirmed COVID-19 requiring at least 10 L/min of oxygen or mechanical ventilation. End of 90-day follow-up was on August 19, 2021. Interventions: Patients were randomized 1:1 to 12 mg/d of intravenous dexamethasone (n = 503) or 6 mg/d of intravenous dexamethasone (n = 497) for up to 10 days. Main Outcomes and Measures: The primary outcome was the number of days alive without life support (invasive mechanical ventilation, circulatory support, or kidney replacement therapy) at 28 days and was adjusted for stratification variables. Of the 8 prespecified secondary outcomes, 5 are included in this analysis (the number of days alive without life support at 90 days, the number of days alive out of the hospital at 90 days, mortality at 28 days and at 90 days, and ≥1 serious adverse reactions at 28 days). Results: Of the 1000 randomized patients, 982 were included (median age, 65 [IQR, 55-73] years; 305 [31%] women) and primary outcome data were available for 971 (491 in the 12 mg of dexamethasone group and 480 in the 6 mg of dexamethasone group). The median number of days alive without life support was 22.0 days (IQR, 6.0-28.0 days) in the 12 mg of dexamethasone group and 20.5 days (IQR, 4.0-28.0 days) in the 6 mg of dexamethasone group (adjusted mean difference, 1.3 days [95% CI, 0-2.6 days]; P = .07). Mortality at 28 days was 27.1% in the 12 mg of dexamethasone group vs 32.3% in the 6 mg of dexamethasone group (adjusted relative risk, 0.86 [99% CI, 0.68-1.08]). Mortality at 90 days was 32.0% in the 12 mg of dexamethasone group vs 37.7% in the 6 mg of dexamethasone group (adjusted relative risk, 0.87 [99% CI, 0.70-1.07]). Serious adverse reactions, including septic shock and invasive fungal infections, occurred in 11.3% in the 12 mg of dexamethasone group vs 13.4% in the 6 mg of dexamethasone group (adjusted relative risk, 0.83 [99% CI, 0.54-1.29]). Conclusions and Relevance: Among patients with COVID-19 and severe hypoxemia, 12 mg/d of dexamethasone compared with 6 mg/d of dexamethasone did not result in statistically significantly more days alive without life support at 28 days. However, the trial may have been underpowered to identify a significant difference. Trial Registration: ClinicalTrials.gov Identifier: NCT04509973 and ctri.nic.in Identifier: CTRI/2020/10/028731.

119 citations

Journal ArticleDOI
TL;DR: Across different exercise modes and in different subjects, exercise often consistently changes the average concentrations of metabolites that belong to energy metabolism and other branches of metabolism.
Abstract: Exercise changes the concentrations of many metabolites, which are small molecules (< 1.5 kDa) metabolized by the reactions of human metabolism. In recent years, especially mass spectrometry-based metabolomics methods have allowed researchers to measure up to hundreds of metabolites in a single sample in a non-biased fashion. To summarize human exercise metabolomics studies to date, we conducted a systematic review that reports the results of experiments that found metabolite concentrations changes after a bout of human endurance or resistance exercise. We carried out a systematic review following PRISMA guidelines and searched for human metabolomics studies that report metabolite concentrations before and within 24 h after endurance or resistance exercise in blood, urine, or sweat. We then displayed metabolites that significantly changed their concentration in at least two experiments. Twenty-seven studies and 57 experiments matched our search criteria and were analyzed. Within these studies, 196 metabolites changed their concentration significantly within 24 h after exercise in at least two experiments. Human biofluids contain mainly unphosphorylated metabolites as the phosphorylation of metabolites such as ATP, glycolytic intermediates, or nucleotides traps these metabolites within cells. Lactate, pyruvate, TCA cycle intermediates, fatty acids, acylcarnitines, and ketone bodies all typically increase after exercise, whereas bile acids decrease. In contrast, the concentrations of proteinogenic and non-proteinogenic amino acids change in different directions. Across different exercise modes and in different subjects, exercise often consistently changes the average concentrations of metabolites that belong to energy metabolism and other branches of metabolism. This dataset is a useful resource for those that wish to study human exercise metabolism.

99 citations

Journal ArticleDOI
TL;DR: The significant divergence in structural elements and multiple functional specifications of FGF19, 21, and 23 in cellular and organismal metabolism instead of cell proliferation and growth sufficiently necessitate a new unified and specific term for these three endocrine FGFs.
Abstract: Members of the fibroblast growth factor (FGF) family play pleiotropic roles in cellular and metabolic homeostasis. During evolution, the ancestor FGF expands into multiple members by acquiring divergent structural elements that enable functional divergence and specification. Heparan sulfate-binding FGFs, which play critical roles in embryonic development and adult tissue remodeling homeostasis, adapt to an autocrine/paracrine mode of action to promote cell proliferation and population growth. By contrast, FGF19, 21, and 23 coevolve through losing binding affinity for extracellular matrix heparan sulfate while acquiring affinity for transmembrane α-Klotho (KL) or β-KL as a coreceptor, thereby adapting to an endocrine mode of action to drive interorgan crosstalk that regulates a broad spectrum of metabolic homeostasis. FGF19 metabolic axis from the ileum to liver negatively controls diurnal bile acid biosynthesis. FGF21 metabolic axes play multifaceted roles in controlling the homeostasis of lipid, glucose, and energy metabolism. FGF23 axes from the bone to kidney and parathyroid regulate metabolic homeostasis of phosphate, calcium, vitamin D, and parathyroid hormone that are important for bone health and systemic mineral balance. The significant divergence in structural elements and multiple functional specifications of FGF19, 21, and 23 in cellular and organismal metabolism instead of cell proliferation and growth sufficiently necessitate a new unified and specific term for these three endocrine FGFs. Thus, the term “FGF Metabolic Axis,” which distinguishes the unique pathways and functions of endocrine FGFs from other autocrine/paracrine mitogenic FGFs, is coined.

90 citations