scispace - formally typeset
Search or ask a question
Author

Jeong-A Lim

Bio: Jeong-A Lim is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Autophagy & Medicine. The author has an hindex of 7, co-authored 7 publications receiving 683 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that TFEB is a viable therapeutic target in PD: overexpression of T FEB in a new muscle cell culture system and in mouse models of the disease reduced glycogen load and lysosomal size, improved autophagosome processing, and alleviated excessive accumulation of autophagic vacuoles.
Abstract: A recently proposed therapeutic approach for lysosomal storage disorders (LSDs) relies upon the ability of transcription factor EB (TFEB) to stimulate autophagy and induce lysosomal exocytosis leading to cellular clearance. This approach is particularly attractive in glycogen storage disease type II [a severe metabolic myopathy, Pompe disease (PD)] as the currently available therapy, replacement of the missing enzyme acid alpha-glucosidase, fails to reverse skeletal muscle pathology. PD, a paradigm for LSDs, is characterized by both lysosomal abnormality and dysfunctional autophagy. Here, we show that TFEB is a viable therapeutic target in PD: overexpression of TFEB in a new muscle cell culture system and in mouse models of the disease reduced glycogen load and lysosomal size, improved autophagosome processing, and alleviated excessive accumulation of autophagic vacuoles. Unexpectedly, the exocytosed vesicles were labelled with lysosomal and autophagosomal membrane markers, suggesting that TFEB induces exocytosis of autophagolysosomes. Furthermore, the effects of TFEB were almost abrogated in the setting of genetically suppressed autophagy, supporting the role of autophagy in TFEB-mediated cellular clearance.

279 citations

Journal ArticleDOI
TL;DR: It is determined that TFEB and TFE3 collaborate with each other in activated macrophages and microglia to promote efficient autophagy induction, increased lysosomal biogenesis, and transcriptional upregulation of numerous proinflammatory cytokines.
Abstract: The activation of transcription factors is critical to ensure an effective defense against pathogens In this study we identify a critical and complementary role of the transcription factors TFEB and TFE3 in innate immune response By using a combination of chromatin immunoprecipitation, CRISPR-Cas9-mediated genome-editing technology, and in vivo models, we determined that TFEB and TFE3 collaborate with each other in activated macrophages and microglia to promote efficient autophagy induction, increased lysosomal biogenesis, and transcriptional upregulation of numerous proinflammatory cytokines Furthermore, secretion of key mediators of the inflammatory response (CSF2, IL1B, IL2, and IL27), macrophage differentiation (CSF1), and macrophage infiltration and migration to sites of inflammation (CCL2) was significantly reduced in TFEB and TFE3 deficient cells These new insights provide us with a deeper understanding of the transcriptional regulation of the innate immune response

208 citations

Journal ArticleDOI
TL;DR: The currently available enzyme replacement therapy (ERT) proved to be successful in reversing cardiac but not skeletal muscle abnormalities and several new therapeutic approaches have been tested in Pompe mouse models: substrate reduction therapy, lysosomal exocytosis following the overexpression of transcription factor EB and a closely related but distinct factor E3, and genetic manipulation of autophagy.
Abstract: Pompe disease is a lysosomal storage disorder in which acid alpha-glucosidase (GAA) is deficient or absent. Deficiency of this lysosomal enzyme results in progressive expansion of glycogen-filled lysosomes in multiple tissues, with cardiac and skeletal muscle being the most severely affected. The clinical spectrum ranges from fatal hypertrophic cardiomyopathy and skeletal muscle myopathy in infants to relatively attenuated forms, which manifest as a progressive myopathy without cardiac involvement. The currently available enzyme replacement therapy (ERT) proved to be successful in reversing cardiac but not skeletal muscle abnormalities. Although the overall understanding of the disease has progressed, the pathophysiology of muscle damage remains poorly understood. Lysosomal enlargement/rupture has long been considered a mechanism of relentless muscle damage in Pompe disease. In past years, it became clear that this simple view of the pathology is inadequate; the pathological cascade involves dysfunctional autophagy, a major lysosome-dependent intracellular degradative pathway. The autophagic process in Pompe skeletal muscle is affected at the termination stage-impaired autophagosomal-lysosomal fusion. Yet another abnormality in the diseased muscle is the accelerated production of large, unrelated to ageing, lipofuscin deposits-a marker of cellular oxidative damage and a sign of mitochondrial dysfunction. The massive autophagic buildup and lipofuscin inclusions appear to cause a greater effect on muscle architecture than the enlarged lysosomes outside the autophagic regions. Furthermore, the dysfunctional autophagy affects the trafficking of the replacement enzyme and interferes with its delivery to the lysosomes. Several new therapeutic approaches have been tested in Pompe mouse models: substrate reduction therapy, lysosomal exocytosis following the overexpression of transcription factor EB and a closely related but distinct factor E3, and genetic manipulation of autophagy.

144 citations

Journal ArticleDOI
TL;DR: This study provides strong evidence that disturbance of Ca2+ homeostasis and mitochondrial abnormalities in Pompe disease represent early changes in a complex pathogenetic cascade leading from a deficiency of a single lysosomal enzyme to severe and hard-to-treat autophagic myopathy.
Abstract: Mitochondria-induced oxidative stress and flawed autophagy are common features of neurodegenerative and lysosomal storage diseases (LSDs). Although defective autophagy is particularly prominent in Pompe disease, mitochondrial function has escaped examination in this typical LSD. We have found multiple mitochondrial defects in mouse and human models of Pompe disease, a life-threatening cardiac and skeletal muscle myopathy: a profound dysregulation of Ca(2+) homeostasis, mitochondrial Ca(2+) overload, an increase in reactive oxygen species, a decrease in mitochondrial membrane potential, an increase in caspase-independent apoptosis, as well as a decreased oxygen consumption and ATP production of mitochondria. In addition, gene expression studies revealed a striking upregulation of the β 1 subunit of L-type Ca(2+) channel in Pompe muscle cells. This study provides strong evidence that disturbance of Ca(2+) homeostasis and mitochondrial abnormalities in Pompe disease represent early changes in a complex pathogenetic cascade leading from a deficiency of a single lysosomal enzyme to severe and hard-to-treat autophagic myopathy. Remarkably, L-type Ca(2+)channel blockers, commonly used to treat other maladies, reversed these defects, indicating that a similar approach can be beneficial to the plethora of lysosomal and neurodegenerative disorders.

84 citations

Journal ArticleDOI
TL;DR: Reactivation of mTOR in the whole muscle of Pompe mice by TSC knockdown resulted in the reversal of atrophy and a striking removal of autophagic buildup, and it was found that the aberrant mTOR signaling can be reversed by arginine.
Abstract: Mechanistic target of rapamycin (mTOR) coordinates biosynthetic and catabolic processes in response to multiple extracellular and intracellular signals including growth factors and nutrients. This serine/threonine kinase has long been known as a critical regulator of muscle mass. The recent finding that the decision regarding its activation/inactivation takes place at the lysosome undeniably brings mTOR into the field of lysosomal storage diseases. In this study, we have examined the involvement of the mTOR pathway in the pathophysiology of a severe muscle wasting condition, Pompe disease, caused by excessive accumulation of lysosomal glycogen. Here, we report the dysregulation of mTOR signaling in the diseased muscle cells, and we focus on potential sites for therapeutic intervention. Reactivation of mTOR in the whole muscle of Pompe mice by TSC knockdown resulted in the reversal of atrophy and a striking removal of autophagic buildup. Of particular interest, we found that the aberrant mTOR signaling can be reversed by arginine. This finding can be translated into the clinic and may become a paradigm for targeted therapy in lysosomal, metabolic, and neuromuscular diseases.

72 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the role of autophagy in neurodegenerative disease is provided, focusing particularly on less frequently considered lysosomal clearance mechanisms and their considerable impact on disease.
Abstract: This Review provides an overview of the role of autophagy, a key lysosomal degradative process, in neurodegenerative diseases. The study of various neurodegenerative diseases has shown that defects in autophagy can arise at different points in the pathway, and this has implications for the successful modulation of autophagy for therapeutic purposes. The Review also discusses the latest developments in targeting alterations in autophagy as a therapeutic strategy for neurodegenerative diseases.

1,643 citations

Journal ArticleDOI
TL;DR: The identification of a master regulator, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy has revealed how the lyssome adapts to environmental cues, such as starvation, and targeting TFEB may provide a novel therapeutic strategy for modulating lysOSomal function in human disease.
Abstract: For a long time, lysosomes were considered merely to be cellular 'incinerators' involved in the degradation and recycling of cellular waste. However, now there is compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signalling and energy metabolism. Furthermore, the essential role of lysosomes in autophagic pathways puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master regulator, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy has revealed how the lysosome adapts to environmental cues, such as starvation, and targeting TFEB may provide a novel therapeutic strategy for modulating lysosomal function in human disease.

1,311 citations

Journal ArticleDOI
TL;DR: The established and emerging roles of autophagy in fuelling biosynthetic capacity and in promoting metabolic and nutrient homeostasis are discussed.
Abstract: Autophagy is a conserved catabolic process that degrades cytoplasmic constituents and organelles in the lysosome. Starvation-induced protein degradation is a salient feature of autophagy but recent progress has illuminated how autophagy, during both starvation and nutrient-replete conditions, can mobilize diverse cellular energy and nutrient stores such as lipids, carbohydrates and iron. Processes such as lipophagy, glycophagy and ferritinophagy enable cells to salvage key metabolites to sustain and facilitate core anabolic functions. Here, we discuss the established and emerging roles of autophagy in fuelling biosynthetic capacity and in promoting metabolic and nutrient homeostasis.

770 citations

Journal ArticleDOI
TL;DR: The modulation of lysosome function could be a promising therapeutic strategy for the treatment of cancer as well as metabolic and neurodegenerative disorders.
Abstract: Exciting new discoveries have transformed the view of the lysosome from a static organelle dedicated to the disposal and recycling of cellular waste to a highly dynamic structure that mediates the adaptation of cell metabolism to environmental cues. Lysosome-mediated signalling pathways and transcription programmes are able to sense the status of cellular metabolism and control the switch between anabolism and catabolism by regulating lysosomal biogenesis and autophagy. The lysosome also extensively communicates with other cellular structures by exchanging content and information and by establishing membrane contact sites. It is now clear that lysosome positioning is a dynamically regulated process and a crucial determinant of lysosomal function. Finally, growing evidence indicates that the role of lysosomal dysfunction in human diseases goes beyond rare inherited diseases, such as lysosomal storage disorders, to include common neurodegenerative and metabolic diseases, as well as cancer. Together, these discoveries highlight the lysosome as a regulatory hub for cellular and organismal homeostasis, and an attractive therapeutic target for a broad variety of disease conditions.

602 citations

Journal ArticleDOI
TL;DR: The roles of TFEB as a regulator of lysosomal biogenesis and intracellular clearance, and its involvement in human diseases are discussed.
Abstract: The transcription factor EB (TFEB) plays a pivotal role in the regulation of basic cellular processes, such as lysosomal biogenesis and autophagy. The subcellular localization and activity of TFEB are regulated by mechanistic target of rapamycin (mTOR)-mediated phosphorylation, which occurs at the lysosomal surface. Phosphorylated TFEB is retained in the cytoplasm, whereas dephosphorylated TFEB translocates to the nucleus to induce the transcription of target genes. Thus, a lysosome-to-nucleus signaling pathway regulates cellular energy metabolism through TFEB. Recently, in vivo studies have revealed that TFEB is also involved in physiological processes, such as lipid catabolism. TFEB has attracted a lot of attention owing to its ability to induce the intracellular clearance of pathogenic factors in a variety of murine models of disease, such as Parkinson's and Alzheimer's, suggesting that novel therapeutic strategies could be based on the modulation of TFEB activity. In this Cell Science at a Glance article and accompanying poster, we present an overview of the latest research on TFEB function and its implication in human diseases.

503 citations