scispace - formally typeset
Search or ask a question
Author

Jeong-Ho Park

Bio: Jeong-Ho Park is an academic researcher from Samsung. The author has contributed to research in topics: Radio resource management & Cellular network. The author has an hindex of 5, co-authored 7 publications receiving 2391 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This article presents recent results from channel measurement campaigns and the development of advanced algorithms and a prototype, which clearly demonstrate that the mmWave band may indeed be a worthy candidate for next generation (5G) cellular systems.
Abstract: The ever growing traffic explosion in mobile communications has recently drawn increased attention to the large amount of underutilized spectrum in the millimeter-wave frequency bands as a potentially viable solution for achieving tens to hundreds of times more capacity compared to current 4G cellular networks. Historically, mmWave bands were ruled out for cellular usage mainly due to concerns regarding short-range and non-line-of-sight coverage issues. In this article, we present recent results from channel measurement campaigns and the development of advanced algorithms and a prototype, which clearly demonstrate that the mmWave band may indeed be a worthy candidate for next generation (5G) cellular systems. The results of channel measurements carried out in both the United States and Korea are summarized along with the actual free space propagation measurements in an anechoic chamber. Then a novel hybrid beamforming scheme and its link- and system-level simulation results are presented. Finally, recent results from our mmWave prototyping efforts along with indoor and outdoor test results are described to assert the feasibility of mmWave bands for cellular usage.

2,405 citations

Journal ArticleDOI
TL;DR: The feasibility, advantages, and challenges of future wireless communications over the Eband frequencies are investigated, the achievability of a nontrivial multiplexing gain in fixed point-to-point E- band links is analyzed, and an E-band mobile broadband (EMB) system is proposed as a candidate for the next generation mobile communication networks.
Abstract: With the formidable growth of various booming wireless communication services that require ever increasing data throughputs, the conventional microwave band below 10 GHz, which is currently used by almost all mobile communication systems, is going to reach its saturation point within just a few years Therefore, the attention of radio system designers has been pushed toward ever higher segments of the frequency spectrum in a quest for increased capacity In this article we investigate the feasibility, advantages, and challenges of future wireless communications over the Eband frequencies We start with a brief review of the history of the E-band spectrum and its light licensing policy as well as benefits/challenges Then we introduce the propagation characteristics of E-band signals, based on which some potential fixed and mobile applications at the E-band are investigated In particular, we analyze the achievability of a nontrivial multiplexing gain in fixed point-to-point E-band links, and propose an E-band mobile broadband (EMB) system as a candidate for the next generation mobile communication networks The channelization and frame structure of the EMB system are discussed in detail

198 citations

Journal ArticleDOI
TL;DR: Detailed link-level and system-level performance simulations are carried out, which demonstrate that SWCM offers significant gains for all users over conventional interference-aware communication schemes.
Abstract: SWCM aims to mitigate the adverse effects of interference at the physical layer by tracking the optimal maximum likelihood decoding performance with low-complexity decoding and minimal coordination overhead. This article reviews the basic structure of the SWCM scheme built on the principles of network information theory, and discusses how it can be extended and implemented in practical wireless communication systems. Using a representative implementation based on LTE OFDM MIMO systems, extensive link-level and system-level performance simulations are carried out, which demonstrate that SWCM offers significant gains for all users over conventional interference-aware communication schemes. Network operating prerequisites for SWCM are also discussed to facilitate the standardization effort for its adoption in the fifth generation cellular network.

20 citations

Proceedings ArticleDOI
Rakesh Taori1, Chang Young Bin1, Kang Hyun Jeong1, Sangkyu Baek1, Y.M. Son1, Jeong-Ho Park1 
01 Dec 2013
TL;DR: This paper introduces a concept called Cloud Cell, suitable for addressing the needs of small-cell based next generation cellular systems, and shows how several key traits of Cloud Cell work together to create edgeless networks.
Abstract: Next Generation Cellular Networks are likely to be characterized by hyper-dense deployments wherein small-cell base stations (BSs) will cooperate together to provide users with data rates of the order of Gigabits per second, regardless of their location in the cell (Gbit/s Anywhere). Meeting the goal of “Gbit/s Anywhere” will require rethinking the fundamental mechanisms for configuring access networks and mobility management. Today's networks have cell edges and these edges give rise to undesirable effects such as low throughput, high interference, service interruptions, and call drops. Denser deployments lead to even smaller cells which in turn will lead to increased number of edges. In this paper, we introduce a concept called Cloud Cell, suitable for addressing the needs of small-cell based next generation cellular systems. In particular, we show how several key traits of Cloud Cell work together to create edgeless networks.

17 citations

Proceedings ArticleDOI
01 Dec 2014
TL;DR: This paper investigates how the basic SWCM scheme performs for the Ped-B fading interference channel model and proposes several improvements in transceiver design, such as soft decoding, input bit-mapping and layer optimization, and power control.
Abstract: The sliding-window superposition coding scheme aims to mitigate intercell interference at the physical layer by achieving the simultaneous decoding performance with point-to-point channel codes, low- complexity decoding, and minimal coordination overhead. The associated sliding-window coded modulation (SWCM) scheme can be readily implemented using standard off-the-shelf codes, such as the standard LTE turbo code, and tracks the information-theoretical performance guarantee of sliding-window superposition coding. This paper investigates how the basic SWCM scheme performs for the Ped-B fading interference channel model and proposes several improvements in transceiver design, such as soft decoding, input bit-mapping and layer optimization, and power control. Our enhanced SWCM scheme achieves the rates higher than those of the basic SWCM scheme by 10% to 20%, which already shows a significant gain over existing schemes that ignore modulation or coding information of interfering signals. This result confirms the potential of SWCM as a basic building block for physical-layer interference management in 5G and subsequent generations of cellular networks.

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

2,624 citations

Journal ArticleDOI
TL;DR: This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.
Abstract: Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.

2,380 citations

Journal ArticleDOI
TL;DR: A general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G Cellular network architecture.
Abstract: In the near future, i.e., beyond 4G, some of the prime objectives or demands that need to be addressed are increased capacity, improved data rate, decreased latency, and better quality of service. To meet these demands, drastic improvements need to be made in cellular network architecture. This paper presents the results of a detailed survey on the fifth generation (5G) cellular network architecture and some of the key emerging technologies that are helpful in improving the architecture and meeting the demands of users. In this detailed survey, the prime focus is on the 5G cellular network architecture, massive multiple input multiple output technology, and device-to-device communication (D2D). Along with this, some of the emerging technologies that are addressed in this paper include interference management, spectrum sharing with cognitive radio, ultra-dense networks, multi-radio access technology association, full duplex radios, millimeter wave solutions for 5G cellular networks, and cloud technologies for 5G radio access networks and software defined networks. In this paper, a general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G cellular network architecture. A detailed survey is included regarding current research projects being conducted in different countries by research groups and institutions that are working on 5G technologies.

1,899 citations

Journal ArticleDOI
TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Abstract: There is considerable pressure to define the key requirements of 5G, develop 5G standards, and perform technology trials as quickly as possible. Normally, these activities are best done in series but there is a desire to complete these tasks in parallel so that commercial deployments of 5G can begin by 2020. 5G will not be an incremental improvement over its predecessors; it aims to be a revolutionary leap forward in terms of data rates, latency, massive connectivity, network reliability, and energy efficiency. These capabilities are targeted at realizing high-speed connectivity, the Internet of Things, augmented virtual reality, the tactile internet, and so on. The requirements of 5G are expected to be met by new spectrum in the microwave bands (3.3-4.2 GHz), and utilizing large bandwidths available in mm-wave bands, increasing spatial degrees of freedom via large antenna arrays and 3-D MIMO, network densification, and new waveforms that provide scalability and flexibility to meet the varying demands of 5G services. Unlike the one size fits all 4G core networks, the 5G core network must be flexible and adaptable and is expected to simultaneously provide optimized support for the diverse 5G use case categories. In this paper, we provide an overview of 5G research, standardization trials, and deployment challenges. Due to the enormous scope of 5G systems, it is necessary to provide some direction in a tutorial article, and in this overview, the focus is largely user centric, rather than device centric. In addition to surveying the state of play in the area, we identify leading technologies, evaluating their strengths and weaknesses, and outline the key challenges ahead, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.

1,659 citations