scispace - formally typeset
Search or ask a question
Author

Jeong-Hwan Mun

Bio: Jeong-Hwan Mun is an academic researcher from Myongji University. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 24, co-authored 59 publications receiving 3795 citations. Previous affiliations of Jeong-Hwan Mun include Rural Development Administration & UPRRP College of Natural Sciences.


Papers
More filters
Journal ArticleDOI
Xiaowu Wang1, Hanzhong Wang, Jun Wang2, Jun Wang3, Jun Wang4, Rifei Sun, Jian Wu, Shengyi Liu, Yinqi Bai4, Jeong-Hwan Mun5, Ian Bancroft6, Feng Cheng, Sanwen Huang, Xixiang Li, Wei Hua, Junyi Wang4, Xiyin Wang7, Xiyin Wang8, Michael Freeling9, J. Chris Pires10, Andrew H. Paterson8, Boulos Chalhoub, Bo Wang4, Alice Hayward11, Alice Hayward12, Andrew G. Sharpe13, Beom-Seok Park5, Bernd Weisshaar14, Binghang Liu4, Bo Li4, Bo Liu, Chaobo Tong, Chi Song4, Chris Duran15, Chris Duran12, Chunfang Peng4, Geng Chunyu4, Chushin Koh13, Chuyu Lin4, David Edwards15, David Edwards12, Desheng Mu4, Di Shen, Eleni Soumpourou6, Fei Li, Fiona Fraser6, Gavin C. Conant10, Gilles Lassalle16, Graham J.W. King3, Guusje Bonnema17, Haibao Tang9, Haiping Wang, Harry Belcram, Heling Zhou4, Hideki Hirakawa, Hiroshi Abe, Hui Guo8, Hui Wang, Huizhe Jin8, Isobel A. P. Parkin18, Jacqueline Batley11, Jacqueline Batley12, Jeong-Sun Kim5, Jérémy Just, Jianwen Li4, Jiaohui Xu4, Jie Deng, Jin A Kim5, Jingping Li8, Jingyin Yu, Jinling Meng19, Jinpeng Wang7, Jiumeng Min4, Julie Poulain20, Katsunori Hatakeyama, Kui Wu4, Li Wang7, Lu Fang, Martin Trick6, Matthew G. Links18, Meixia Zhao, Mina Jin5, Nirala Ramchiary21, Nizar Drou22, Paul J. Berkman15, Paul J. Berkman12, Qingle Cai4, Quanfei Huang4, Ruiqiang Li4, Satoshi Tabata, Shifeng Cheng4, Shu Zhang4, Shujiang Zhang, Shunmou Huang, Shusei Sato, Silong Sun, Soo-Jin Kwon5, Su-Ryun Choi21, Tae-Ho Lee8, Wei Fan4, Xiang Zhao4, Xu Tan8, Xun Xu4, Yan Wang, Yang Qiu, Ye Yin4, Yingrui Li4, Yongchen Du, Yongcui Liao, Yong Pyo Lim21, Yoshihiro Narusaka, Yupeng Wang7, Zhenyi Wang7, Zhenyu Li4, Zhiwen Wang4, Zhiyong Xiong10, Zhonghua Zhang 
TL;DR: The annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage, and used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution.
Abstract: We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.

1,811 citations

Journal ArticleDOI
01 Mar 2004-Genetics
TL;DR: A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an F2 population composed of 93 individuals, indicating that the two Medicago genomes are highly similar and establishes the basis for a Medicago composite map.
Abstract: A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an F2 population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene analogs, covering 513 cM. In the case of EST-based markers we used an intron-targeted marker strategy with primers designed to anneal in conserved exon regions and to amplify across intron regions. Polymorphisms were significantly more frequent in intron vs. exon regions, thus providing an efficient mechanism to map transcribed genes. Genetic and cytogenetic analysis produced eight well-resolved linkage groups, which have been previously correlated with eight chromosomes by means of FISH with mapped BAC clones. We anticipated that mapping of conserved coding regions would have utility for comparative mapping among legumes; thus 60 of the EST-based primer pairs were designed to amplify orthologous sequences across a range of legume species. As an initial test of this strategy, we used primers designed against M. truncatula exon sequences to rapidly map genes in M. sativa. The resulting comparative map, which includes 68 bridging markers, indicates that the two Medicago genomes are highly similar and establishes the basis for a Medicago composite map.

334 citations

Journal ArticleDOI
TL;DR: This work provides the first evidence of the involvement of IPD3 in a nuclear interaction with DMI3, a calcium- and calmodulin-dependent kinase required for the establishment of both nodulation and AM symbiosis.
Abstract: Many higher plants establish symbiotic relationships with arbuscular mycorrhizal (AM) fungi that improve their ability to acquire nutrients from the soil. In addition to establishing AM symbiosis, legumes also enter into a nitrogen-fixing symbiosis with bacteria known as rhizobia that results in the formation of root nodules. Several genes involved in the perception and transduction of bacterial symbiotic signals named "Nod factors" have been cloned recently in model legumes through forward genetic approaches. Among them, DMI3 (Doesn't Make Infections 3) is a calcium- and calmodulin-dependent kinase required for the establishment of both nodulation and AM symbiosis. We have identified, by a yeast two-hybrid system, a novel protein interacting with DMI3 named IPD3 (Interacting Protein of DMI3). IPD3 is predicted to interact with DMI3 through a C-terminal coiled-coil domain. Chimeric IPD3::GFP is localized to the nucleus of transformed Medicago truncatula root cells, in which split yellow fluorescent protein assays suggest that IPD3 and DMI3 physically interact in Nicotiana benthamiana. Like DMI3, IPD3 is extremely well conserved among the angiosperms and is absent from Arabidopsis. Despite this high level of conservation, none of the homologous proteins have a demonstrated biological or biochemical function. This work provides the first evidence of the involvement of IPD3 in a nuclear interaction with DMI3.

286 citations

Journal ArticleDOI
TL;DR: It appears that polyploidy and chromosomal diploidization are ongoing processes that collectively stabilize the B. rapa genome and facilitate its evolution.
Abstract: Brassica rapa is one of the most economically important vegetable crops worldwide. Owing to its agronomic importance and phylogenetic position, B. rapa provides a crucial reference to understand polyploidy-related crop genome evolution. The high degree of sequence identity and remarkably conserved genome structure between Arabidopsis and Brassica genomes enables comparative tiling sequencing using Arabidopsis sequences as references to select the counterpart regions in B. rapa, which is a strong challenge of structural and comparative crop genomics. We assembled 65.8 megabase-pairs of non-redundant euchromatic sequence of B. rapa and compared this sequence to the Arabidopsis genome to investigate chromosomal relationships, macrosynteny blocks, and microsynteny within blocks. The triplicated B. rapa genome contains only approximately twice the number of genes as in Arabidopsis because of genome shrinkage. Genome comparisons suggest that B. rapa has a distinct organization of ancestral genome blocks as a result of recent whole genome triplication followed by a unique diploidization process. A lack of the most recent whole genome duplication (3R) event in the B. rapa genome, atypical of other Brassica genomes, may account for the emergence of B. rapa from the Brassica progenitor around 8 million years ago. This work demonstrates the potential of using comparative tiling sequencing for genome analysis of crop species. Based on a comparative analysis of the B. rapa sequences and the Arabidopsis genome, it appears that polyploidy and chromosomal diploidization are ongoing processes that collectively stabilize the B. rapa genome and facilitate its evolution.

201 citations

Journal ArticleDOI
TL;DR: Phylogenetic and evolutionary analyses suggest that relatively higher relaxation of selective constraints on the TNL group after the old duplication event resulted in greater accumulation of TNLs than CNLs in both Arabidopsis and Brassica genomes.
Abstract: Nucleotide-binding site (NBS)-encoding resistance genes are key plant disease-resistance genes and are abundant in plant genomes, comprising up to 2% of all genes. The availability of genome sequences from several plant models enables the identification and cloning of NBS-encoding genes from closely related species based on a comparative genomics approach. In this study, we used the genome sequence of Brassica rapa to identify NBS-encoding genes in the Brassica genome. We identified 92 non-redundant NBS-encoding genes [30 CC-NBS-LRR (CNL) and 62 TIR-NBS-LRR (TNL) genes] in approximately 100 Mbp of B. rapa euchromatic genome sequence. Despite the fact that B. rapa has a significantly larger genome than Arabidopsis thaliana due to a recent whole genome triplication event after speciation, B. rapa contains relatively small number of NBS-encoding genes compared to A. thaliana, presumably because of deletion of redundant genes related to genome diploidization. Phylogenetic and evolutionary analyses suggest that relatively higher relaxation of selective constraints on the TNL group after the old duplication event resulted in greater accumulation of TNLs than CNLs in both Arabidopsis and Brassica genomes. Recent tandem duplication and ectopic deletion are likely to have played a role in the generation of novel Brassica lineage-specific resistance genes.

140 citations


Cited by
More filters
Journal ArticleDOI
Xun Xu1, Shengkai Pan1, Shifeng Cheng1, Bo Zhang1, Mu D1, Peixiang Ni1, Gengyun Zhang1, Shuang Yang1, Ruiqiang Li1, Jun Wang1, Gisella Orjeda2, Frank Guzman2, Torres M2, Roberto Lozano2, Olga Ponce2, Diana Martinez2, De la Cruz G3, Chakrabarti Sk3, Patil Vu3, Konstantin G. Skryabin4, Boris B. Kuznetsov4, Nikolai V. Ravin4, Tatjana V. Kolganova4, Alexey V. Beletsky4, Andrey V. Mardanov4, Di Genova A5, Dan Bolser5, David M. A. Martin5, Li G, Yang Y, Hanhui Kuang6, Hu Q6, Xiong X7, Gerard J. Bishop8, Boris Sagredo, Nilo Mejía, Zagorski W9, Robert Gromadka9, Jan Gawor9, Pawel Szczesny9, Sanwen Huang, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Youjun Zhang, Xie B, Du Y, Qu D, Merideth Bonierbale10, Marc Ghislain10, Herrera Mdel R, Giovanni Giuliano, Marco Pietrella, Gaetano Perrotta, Paolo Facella, O'Brien K11, Sergio Enrique Feingold, Barreiro Le, Massa Ga, Luis Aníbal Diambra12, Brett R Whitty13, Brieanne Vaillancourt13, Lin H13, Alicia N. Massa13, Geoffroy M13, Lundback S13, Dean DellaPenna13, Buell Cr14, Sanjeev Kumar Sharma14, David Marshall14, Robbie Waugh14, Glenn J. Bryan14, Destefanis M15, Istvan Nagy15, Dan Milbourne15, Susan Thomson16, Mark Fiers16, Jeanne M. E. Jacobs16, Kåre Lehmann Nielsen17, Mads Sønderkær17, Marina Iovene18, Giovana Augusta Torres18, Jiming Jiang18, Richard E. Veilleux19, Christian W. B. Bachem20, de Boer J20, Theo Borm20, Bjorn Kloosterman20, van Eck H20, Erwin Datema20, Hekkert Bt20, Aska Goverse20, van Ham Rc20, Richard G. F. Visser20 
10 Jul 2011-Nature
TL;DR: The potato genome sequence provides a platform for genetic improvement of this vital crop and predicts 39,031 protein-coding genes and presents evidence for at least two genome duplication events indicative of a palaeopolyploid origin.
Abstract: Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.

1,813 citations

Journal ArticleDOI
Xiaowu Wang1, Hanzhong Wang, Jun Wang2, Jun Wang3, Jun Wang4, Rifei Sun, Jian Wu, Shengyi Liu, Yinqi Bai2, Jeong-Hwan Mun5, Ian Bancroft6, Feng Cheng, Sanwen Huang, Xixiang Li, Wei Hua, Junyi Wang2, Xiyin Wang7, Xiyin Wang8, Michael Freeling9, J. Chris Pires10, Andrew H. Paterson7, Boulos Chalhoub, Bo Wang2, Alice Hayward11, Alice Hayward12, Andrew G. Sharpe13, Beom-Seok Park5, Bernd Weisshaar14, Binghang Liu2, Bo Li2, Bo Liu, Chaobo Tong, Chi Song2, Chris Duran12, Chris Duran15, Chunfang Peng2, Geng Chunyu2, Chushin Koh13, Chuyu Lin2, David Edwards12, David Edwards15, Desheng Mu2, Di Shen, Eleni Soumpourou6, Fei Li, Fiona Fraser6, Gavin C. Conant10, Gilles Lassalle16, Graham J.W. King3, Guusje Bonnema17, Haibao Tang9, Haiping Wang, Harry Belcram, Heling Zhou2, Hideki Hirakawa, Hiroshi Abe, Hui Guo7, Hui Wang, Huizhe Jin7, Isobel A. P. Parkin18, Jacqueline Batley12, Jacqueline Batley11, Jeong-Sun Kim5, Jérémy Just, Jianwen Li2, Jiaohui Xu2, Jie Deng, Jin A Kim5, Jingping Li7, Jingyin Yu, Jinling Meng19, Jinpeng Wang8, Jiumeng Min2, Julie Poulain20, Katsunori Hatakeyama, Kui Wu2, Li Wang8, Lu Fang, Martin Trick6, Matthew G. Links18, Meixia Zhao, Mina Jin5, Nirala Ramchiary21, Nizar Drou22, Paul J. Berkman12, Paul J. Berkman15, Qingle Cai2, Quanfei Huang2, Ruiqiang Li2, Satoshi Tabata, Shifeng Cheng2, Shu Zhang2, Shujiang Zhang, Shunmou Huang, Shusei Sato, Silong Sun, Soo-Jin Kwon5, Su-Ryun Choi21, Tae-Ho Lee7, Wei Fan2, Xiang Zhao2, Xu Tan7, Xun Xu2, Yan Wang, Yang Qiu, Ye Yin2, Yingrui Li2, Yongchen Du, Yongcui Liao, Yong Pyo Lim21, Yoshihiro Narusaka, Yupeng Wang8, Zhenyi Wang8, Zhenyu Li2, Zhiwen Wang2, Zhiyong Xiong10, Zhonghua Zhang 
TL;DR: The annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage, and used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution.
Abstract: We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.

1,811 citations

Journal ArticleDOI
Boulos Chalhoub1, Shengyi Liu2, Isobel A. P. Parkin3, Haibao Tang4, Haibao Tang5, Xiyin Wang6, Julien Chiquet1, Harry Belcram1, Chaobo Tong2, Birgit Samans7, Margot Correa8, Corinne Da Silva8, Jérémy Just1, Cyril Falentin9, Chu Shin Koh10, Isabelle Le Clainche1, Maria Bernard8, Pascal Bento8, Benjamin Noel8, Karine Labadie8, Adriana Alberti8, Mathieu Charles9, Dominique Arnaud1, Hui Guo6, Christian Daviaud, Salman Alamery11, Kamel Jabbari1, Kamel Jabbari12, Meixia Zhao13, Patrick P. Edger14, Houda Chelaifa1, David C. Tack15, Gilles Lassalle9, Imen Mestiri1, Nicolas Schnel9, Marie-Christine Le Paslier9, Guangyi Fan, Victor Renault16, Philippe E. Bayer11, Agnieszka A. Golicz11, Sahana Manoli11, Tae-Ho Lee6, Vinh Ha Dinh Thi1, Smahane Chalabi1, Qiong Hu2, Chuchuan Fan17, Reece Tollenaere11, Yunhai Lu1, Christophe Battail8, Jinxiong Shen17, Christine Sidebottom10, Xinfa Wang2, Aurélie Canaguier1, Aurélie Chauveau9, Aurélie Bérard9, G. Deniot9, Mei Guan18, Zhongsong Liu18, Fengming Sun, Yong Pyo Lim19, Eric Lyons20, Christopher D. Town5, Ian Bancroft21, Xiaowu Wang, Jinling Meng17, Jianxin Ma13, J. Chris Pires22, Graham J.W. King23, Dominique Brunel9, Régine Delourme9, Michel Renard9, Jean-Marc Aury8, Keith L. Adams15, Jacqueline Batley24, Jacqueline Batley11, Rod J. Snowdon7, Jörg Tost, David Edwards11, David Edwards24, Yongming Zhou17, Wei Hua2, Andrew G. Sharpe10, Andrew H. Paterson6, Chunyun Guan18, Patrick Wincker8, Patrick Wincker1, Patrick Wincker25 
22 Aug 2014-Science
TL;DR: The polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed, is sequenced.
Abstract: Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.

1,743 citations

Journal ArticleDOI
TL;DR: During evolution, the genetic programme for AM has been recruited for other plant root symbioses: functional adaptation of a plant receptor kinase that is essential for AM symbiosis paved the way for nitrogen-fixing bacteria to form intracellular symbiosis with plant cells.
Abstract: Arbuscular mycorrhiza (AM), a symbiosis between plants and members of an ancient phylum of fungi, the Glomeromycota, improves the supply of water and nutrients, such as phosphate and nitrogen, to the host plant. In return, up to 20% of plant-fixed carbon is transferred to the fungus. Nutrient transport occurs through symbiotic structures inside plant root cells known as arbuscules. AM development is accompanied by an exchange of signalling molecules between the symbionts. A novel class of plant hormones known as strigolactones are exuded by the plant roots. On the one hand, strigolactones stimulate fungal metabolism and branching. On the other hand, they also trigger seed germination of parasitic plants. Fungi release signalling molecules, in the form of 'Myc factors' that trigger symbiotic root responses. Plant genes required for AM development have been characterized. During evolution, the genetic programme for AM has been recruited for other plant root symbioses: functional adaptation of a plant receptor kinase that is essential for AM symbiosis paved the way for nitrogen-fixing bacteria to form intracellular symbioses with plant cells.

1,688 citations

10 Dec 2007
TL;DR: The experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.
Abstract: EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

1,528 citations