scispace - formally typeset
Search or ask a question
Author

Jeongki Min

Bio: Jeongki Min is an academic researcher from North Carolina State University. The author has contributed to research in topics: Wireless sensor network & Wireless network. The author has an hindex of 6, co-authored 7 publications receiving 2557 citations.

Papers
More filters
Proceedings ArticleDOI
02 Nov 2005
TL;DR: Z-MAC is a hybrid MAC protocol for wireless sensor networks that combines the strengths of TDMA and CSMA while offsetting their weaknesses and achieves high channel utilization under high contention and reduces collision among two-hop neighbors at a low cost.
Abstract: This paper presents the design, implementation and performance evaluation of a hybrid MAC protocol, called Z-MAC, for wireless sensor networks that combines the strengths of TDMA and CSMA while offsetting their weaknesses Like CSMA, Z-MAC achieves high channel utilization and low-latency under low contention and like TDMA, achieves high channel utilization under high contention and reduces collision among two-hop neighbors at a low cost A distinctive feature of Z-MAC is that its performance is robust to synchronization errors, slot assignment failures and time-varying channel conditions; in the worst case, its performance always falls back to that of CSMA Z-MAC is implemented in TinyOS

1,050 citations

Journal ArticleDOI
TL;DR: A hybrid MAC protocol for wireless sensor networks that combines the strengths of TDMA and CSMA while offsetting their weaknesses, ZMAC, which achieves high channel utilization and low latency under low contention and reduces collision among two-hop neighbors at a low cost.
Abstract: This paper presents the design, implementation and performance evaluation of a hybrid MAC protocol, called Z-MAC, for wireless sensor networks that combines the strengths of TDMA and CSMA while offsetting their weaknesses. Like CSMA, Z-MAC achieves high channel utilization and low latency under low contention and like TDMA, achieves high channel utilization under high contention and reduces collision among two-hop neighbors at a low cost. A distinctive feature of Z-MAC is that its performance is robust to synchronization errors, slot assignment failures, and time-varying channel conditions; in the worst case, its performance always falls back to that of CSMA. Z-MAC is implemented in TinyOS.

762 citations

Proceedings ArticleDOI
22 May 2006
TL;DR: The effect of the time-varying nature of wireless links on the conflict-free property of DRAND-assigned time slots is evaluated and the algorithm is implemented in TinyOS and shown to be effective in adapting to local topology changes without incurring global overhead in the scheduling.
Abstract: This paper presents a distributed implementation of RAND, a randomized time slot scheduling algorithm, called DRAND. DRAND runs in O(δ) time and message complexity where δ is the maximum size of a two-hop neighborhood in a wire-less network while message complexity remains O(δ), assuming that message delays can be bounded by an unknown constant.DRAND is the first fully distributed version of RAND. The algorithm is suitable for a wireless network where most nodes do not move,such as wireless mesh networks and wireless sensor networks.We implement the algorithm in TinyOS and demonstrate its performance in a real testbed of Mica2 nodes. The algorithm does not require any time synchronization and is shown to be effective in adapting to local topology changes without incurring global overhead in the scheduling.Because of these features, it can also be used even for other scheduling problems such as frequency or code scheduling (for FDMA or CDMA) or local identifier assignment for wireless networks where time synchronization is not enforced.

357 citations

Journal ArticleDOI
TL;DR: The algorithm is implemented in TinyOS and shown to be effective in adapting to local topology changes without incurring global overhead in the scheduling, and the effect of the time-varying nature of wireless links on the conflict-free property of DRAND-assigned time slots is evaluated.
Abstract: This paper presents a distributed implementation of RAND, a randomized time slot scheduling algorithm, called DRAND. DRAND runs in O(delta) time and message complexity where delta is the maximum size of a two-hop neighborhood in a wireless network while message complexity remains O(delta), assuming that message delays can be bounded by an unknown constant. DRAND is the first fully distributed version of RAND. The algorithm is suitable for a wireless network where most nodes do not move, such as wireless mesh networks and wireless sensor networks. We implement the algorithm in TinyOS and demonstrate its performance in a real testbed of Mica2 nodes. The algorithm does not require any time synchronization and is shown to be effective in adapting to local topology changes without incurring global overhead in the scheduling. Because of these features, it can also be used even for other scheduling problems such as frequency or code scheduling (for FDMA or CDMA) or local identifier assignment for wireless networks where time synchronization is not enforced. We further evaluate the effect of the time-varying nature of wireless links on the conflict-free property of DRAND-assigned time slots. This experiment is conducted on a 55-node testbed consisting of the more recent MicaZ sensor nodes.

339 citations

Proceedings ArticleDOI
10 Dec 2012
TL;DR: The solution WiFox is proposed, which adaptively prioritizes AP's channel access over competing STAs avoiding traffic asymmetry, and provides a fairness framework alleviating the problem of performance loss due to rate-diversity/fairness and avoids degradation due to TCP behaviour.
Abstract: WiFi-based wireless LANs (WLANs) are widely used for Internet access. They were designed such that an Access Points (AP) serves few associated clients with symmetric uplink/downlink traffic patterns. Usage of WiFi hotspots in locations such as airports and large conventions frequently experience poor performance in terms of downlink goodput and responsiveness. We study the various factors responsible for this performance degradation. We analyse and emulate a large conference network environment on our testbed with 45 nodes. We find that presence of asymmetry between the uplink/downlink traffic results in backlogged packets at WiFi Access Point's (AP's) transmission queue and subsequent packet losses. This traffic asymmetry results in maximum performance loss for such an environment along with degradation due to rate diversity, fairness and TCP behaviour. We propose our solution WiFox, which (1) adaptively prioritizes AP's channel access over competing STAs avoiding traffic asymmetry (2) provides a fairness framework alleviating the problem of performance loss due to rate-diversity/fairness and (3) avoids degradation due to TCP behaviour. We demonstrate that WiFox not only improves downlink goodput by 400-700 % but also reduces request's average response time by 30-40 %.

57 citations


Cited by
More filters
Journal ArticleDOI
01 May 2009
TL;DR: This paper breaks down the energy consumption for the components of a typical sensor node, and discusses the main directions to energy conservation in WSNs, and presents a systematic and comprehensive taxonomy of the energy conservation schemes.
Abstract: In the last years, wireless sensor networks (WSNs) have gained increasing attention from both the research community and actual users. As sensor nodes are generally battery-powered devices, the critical aspects to face concern how to reduce the energy consumption of nodes, so that the network lifetime can be extended to reasonable times. In this paper we first break down the energy consumption for the components of a typical sensor node, and discuss the main directions to energy conservation in WSNs. Then, we present a systematic and comprehensive taxonomy of the energy conservation schemes, which are subsequently discussed in depth. Special attention has been devoted to promising solutions which have not yet obtained a wide attention in the literature, such as techniques for energy efficient data acquisition. Finally we conclude the paper with insights for research directions about energy conservation in WSNs.

2,546 citations

Proceedings ArticleDOI
02 Nov 2005
TL;DR: Z-MAC is a hybrid MAC protocol for wireless sensor networks that combines the strengths of TDMA and CSMA while offsetting their weaknesses and achieves high channel utilization under high contention and reduces collision among two-hop neighbors at a low cost.
Abstract: This paper presents the design, implementation and performance evaluation of a hybrid MAC protocol, called Z-MAC, for wireless sensor networks that combines the strengths of TDMA and CSMA while offsetting their weaknesses Like CSMA, Z-MAC achieves high channel utilization and low-latency under low contention and like TDMA, achieves high channel utilization under high contention and reduces collision among two-hop neighbors at a low cost A distinctive feature of Z-MAC is that its performance is robust to synchronization errors, slot assignment failures and time-varying channel conditions; in the worst case, its performance always falls back to that of CSMA Z-MAC is implemented in TinyOS

1,050 citations

Journal ArticleDOI
TL;DR: A hybrid MAC protocol for wireless sensor networks that combines the strengths of TDMA and CSMA while offsetting their weaknesses, ZMAC, which achieves high channel utilization and low latency under low contention and reduces collision among two-hop neighbors at a low cost.
Abstract: This paper presents the design, implementation and performance evaluation of a hybrid MAC protocol, called Z-MAC, for wireless sensor networks that combines the strengths of TDMA and CSMA while offsetting their weaknesses. Like CSMA, Z-MAC achieves high channel utilization and low latency under low contention and like TDMA, achieves high channel utilization under high contention and reduces collision among two-hop neighbors at a low cost. A distinctive feature of Z-MAC is that its performance is robust to synchronization errors, slot assignment failures, and time-varying channel conditions; in the worst case, its performance always falls back to that of CSMA. Z-MAC is implemented in TinyOS.

762 citations

Proceedings ArticleDOI
31 Oct 2006
TL;DR: This work establishes optimal configurations for both LPL and SCP under fixed conditions, developing a lower bound of energy consumption and shows how SCP adapts to heavy traffic and streams data in multi-hop networks, reducing latency by 85% and energy by 95% at 9 hops.
Abstract: Energy is a critical resource in sensor networks. MAC protocols such as S-MAC and T-MAC coordinate sleep schedules to reduce energy consumption. Recently, lowpower listening (LPL) approaches such as WiseMAC and B-MAC exploit very brief polling of channel activity combined with long preambles before each transmission, saving energy particularly during low network utilization. Synchronization cost, either explicitly in scheduling, or implicitly in long preambles, limits all these protocols to duty cycles of 1-2%. We demonstrate that ultra-low duty cycles of 0.1% and below are possible with a new MAC protocol called scheduled channel polling (SCP). This work prompts three new contributions: First, we establish optimal configurations for both LPL and SCP under fixed conditions, developing a lower bound of energy consumption. Under these conditions, SCP can extend lifetime of a network by a factor of 3-6 times over LPL. Second, SCP is designed to adapt well to variable traffic. LPL is optimized for known, periodic traffic, and long preambles become very costly when traffic varies. In one experiment, SCP reduces energy consumption by a factor of 10 under bursty traffic. We also show how SCP adapts to heavy traffic and streams data in multi-hop networks, reducing latency by 85% and energy by 95% at 9 hops. Finally, we show that SCP can operate effectively on recent hardware such as 802.15.4 radios. In fact, power consumption of SCP decreases with faster radios, but that of LPL increases.

652 citations

Journal ArticleDOI
TL;DR: This work surveys the current state-of-the-art of information fusion by presenting the known methods, algorithms, architectures, and models, and discusses their applicability in the context of wireless sensor networks.
Abstract: Wireless sensor networks produce a large amount of data that needs to be processed, delivered, and assessed according to the application objectives. The way these data are manipulated by the sensor nodes is a fundamental issue. Information fusion arises as a response to process data gathered by sensor nodes and benefits from their processing capability. By exploiting the synergy among the available data, information fusion techniques can reduce the amount of data traffic, filter noisy measurements, and make predictions and inferences about a monitored entity. In this work, we survey the current state-of-the-art of information fusion by presenting the known methods, algorithms, architectures, and models of information fusion, and discuss their applicability in the context of wireless sensor networks.

606 citations