scispace - formally typeset
Search or ask a question
Author

Jeongsik Kim

Bio: Jeongsik Kim is an academic researcher from Jeju National University. The author has contributed to research in topics: Arabidopsis & Senescence. The author has an hindex of 21, co-authored 36 publications receiving 2551 citations. Previous affiliations of Jeongsik Kim include Pohang University of Science and Technology & Ohio State University.

Papers
More filters
Journal ArticleDOI
20 Feb 2009-Science
TL;DR: The trifurcate feed-forward pathway involving ORE1, miR164, and EIN2 provides a highly robust regulation to ensure that aging induces cell death in Arabidopsis leaves.
Abstract: Aging induces gradual yet massive cell death in higher organisms, including annual plants. Even so, the underlying regulatory mechanisms are barely known, despite the long-standing interest in this topic. Here, we demonstrate that ORE1, which is a NAC (NAM, ATAF, and CUC) transcription factor, positively regulates aging-induced cell death in Arabidopsis leaves. ORE1 expression is up-regulated concurrently with leaf aging by EIN2 but is negatively regulated by miR164. miR164 expression gradually decreases with aging through negative regulation by EIN2, which leads to the elaborate up-regulation of ORE1 expression. However, EIN2 still contributes to aging-induced cell death in the absence of ORE1. The trifurcate feed-forward pathway involving ORE1, miR164, and EIN2 provides a highly robust regulation to ensure that aging induces cell death in Arabidopsis leaves.

603 citations

Journal ArticleDOI
20 Sep 2007-Nature
TL;DR: It is shown that GIGANTEA (GI) is essential to establish and sustain oscillations of ZTL by a direct protein-protein interaction, which results in the high-amplitude TOC1 rhythms necessary for proper clock function.
Abstract: The circadian clock is essential for coordinating the proper phasing of many important cellular processes. Robust cycling of key clock elements is required to maintain strong circadian oscillations of these clock-controlled outputs. Rhythmic expression of the Arabidopsis thaliana F-box protein ZEITLUPE (ZTL) is necessary to sustain a normal circadian period by controlling the proteasome-dependent degradation of a central clock protein, TIMING OF CAB EXPRESSION 1 (TOC1). ZTL messenger RNA is constitutively expressed, but ZTL protein levels oscillate with a threefold change in amplitude through an unknown mechanism. Here we show that GIGANTEA (GI) is essential to establish and sustain oscillations of ZTL by a direct protein-protein interaction. GI, a large plant-specific protein with a previously undefined molecular role, stabilizes ZTL in vivo. Furthermore, the ZTL-GI interaction is strongly and specifically enhanced by blue light, through the amino-terminal flavin-binding LIGHT, OXYGEN OR VOLTAGE (LOV) domain of ZTL. Mutations within this domain greatly diminish ZTL-GI interactions, leading to strongly reduced ZTL levels. Notably, a C82A mutation in the LOV domain, implicated in the flavin-dependent photochemistry, eliminates blue-light-enhanced binding of GI to ZTL. These data establish ZTL as a blue-light photoreceptor, which facilitates its own stability through a blue-light-enhanced GI interaction. Because the regulation of GI transcription is clock-controlled, consequent GI protein cycling confers a post-translational rhythm on ZTL protein. This mechanism of establishing and sustaining robust oscillations of ZTL results in the high-amplitude TOC1 rhythms necessary for proper clock function.

548 citations

Journal ArticleDOI
TL;DR: It is shown that members of the plant Groucho/Tup1 corepressor family, TOPLESS/TOPLESS-RELATED (TPL/TPR), interact with these three PRR proteins at the CCA1 and LHY promoters to repress transcription and alter circadian period.
Abstract: Circadian clocks are ubiquitous molecular time-keeping mechanisms that coordinate physiology and metabolism and provide an adaptive advantage to higher plants. The central oscillator of the plant clock is composed of interlocked feedback loops that involve multiple repressive factors acting throughout the circadian cycle. PSEUDO RESPONSE REGULATORS (PRRs) comprise a five-member family that is essential to the function of the central oscillator. PRR5, PRR7, and PRR9 can bind the promoters of the core clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) to restrict their expression to near dawn, but the mechanism has been unclear. Here we report that members of the plant Groucho/Tup1 corepressor family, TOPLESS/TOPLESS-RELATED (TPL/TPR), interact with these three PRR proteins at the CCA1 and LHY promoters to repress transcription and alter circadian period. This activity is diminished in the presence of the inhibitor trichostatin A, indicating the requirement of histone deacetylase for full TPL activity. Additionally, a complex of PRR9, TPL, and histone deacetylase 6, can form in vivo, implicating this tripartite association as a central repressor of circadian gene expression. Our findings show that the TPL/TPR corepressor family are components of the central circadian oscillator mechanism and reinforces the role of this family as central to multiple signaling pathways in higher plants.

228 citations

Journal ArticleDOI
TL;DR: It is suggested that RAV1 is sufficient to cause leaf senescence and it functions as a positive regulator in this process.
Abstract: Leaf senescence is a developmentally programmed cell death process that constitutes the final step of leaf development and involves the extensive reprogramming of gene expression. Despite the importance of senescence in plants, the underlying regulatory mechanisms are not well understood. This study reports the isolation and functional analysis of RAV1, which encodes a RAV family transcription factor. Expression of RAV1 and its homologues is closely associated with leaf maturation and senescence. RAV1 mRNA increased at a later stage of leaf maturation and reached a maximal level early in senescence, but decreased again during late senescence. This profile indicates that RAV1 could play an important regulatory role in the early events of leaf senescence. Furthermore, constitutive and inducible overexpression of RAV1 caused premature leaf senescence. These data strongly suggest that RAV1 is sufficient to cause leaf senescence and it functions as a positive regulator in this process.

157 citations

Journal ArticleDOI
TL;DR: This review focuses on recent milestones in leaf senescence research obtained using multi-omics technologies, as well as future endeavors toward systems understanding of leaf Senescence processes, including determining the molecular principles that coordinate concurrent and ordered changes in biological events during leaf seneca.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Data accumulated over the past few years now show that the UPS targets numerous intracellular regulators that have central roles in hormone signalling, the regulation of chromatin structure and transcription, tailoring morphogenesis, responses to environmental challenges, self recognition and battling pathogens.
Abstract: Plants, like other eukaryotes, rely on proteolysis to control the abundance of key regulatory proteins and enzymes. Strikingly, genome-wide studies have revealed that the ubiquitin-26S proteasome system (UPS) in particular is an exceedingly large and complex route for protein removal, occupying nearly 6% of the Arabidopsis thaliana proteome. But why is the UPS so pervasive in plants? Data accumulated over the past few years now show that it targets numerous intracellular regulators that have central roles in hormone signalling, the regulation of chromatin structure and transcription, tailoring morphogenesis, responses to environmental challenges, self recognition and battling pathogens.

1,062 citations

Journal ArticleDOI
TL;DR: Genomic studies have further revealed that light induces massive reprogramming of the plant transcriptome, and that the early light-responsive genes are enriched in transcription factors, and these combined approaches provide new insights into light-regulated transcriptional networks.
Abstract: Plants have evolved complex and sophisticated transcriptional networks that mediate developmental changes in response to light. These light-regulated processes include seedling photomorphogenesis, seed germination and the shade-avoidance and photoperiod responses. Understanding the components and hierarchical structure of the transcriptional networks that are activated during these processes has long been of great interest to plant scientists. Traditional genetic and molecular approaches have proved powerful in identifying key regulatory factors and their positions within these networks. Recent genomic studies have further revealed that light induces massive reprogramming of the plant transcriptome, and that the early light-responsive genes are enriched in transcription factors. These combined approaches provide new insights into light-regulated transcriptional networks.

912 citations

Journal ArticleDOI
TL;DR: In this article, a review mainly focuses on the transcriptional regulation of ABA-mediated gene expression in response to osmotic stress during the vegetative growth stage in Arabidopsis.
Abstract: The plant hormone abscisic acid (ABA) plays a pivotal role in a variety of developmental processes and adaptive stress responses to environmental stimuli in plants. Cellular dehydration during the seed maturation and vegetative growth stages induces an increase in endogenous ABA levels, which control many dehydration-responsive genes. In Arabidopsis plants, ABA regulates nearly 10% of the protein-coding genes, a much higher percentage than other plant hormones. Expression of the genes is mainly regulated by two different families of bZIP transcription factors (TFs), ABI5 in the seeds and AREB/ABFs in the vegetative stage, in an ABA-responsive-element (ABRE) dependent manner. The SnRK2-AREB/ABF pathway governs the majority of ABA-mediated ABRE-dependent gene expression in response to osmotic stress during the vegetative stage. In addition to osmotic stress, the circadian clock and light conditions also appear to participate in the regulation of ABA-mediated gene expression, likely conferring versatile tolerance and repressing growth under stress conditions. Moreover, various other TFs belonging to several classes, including AP2/ERF, MYB, NAC, and HD-ZF, have been reported to engage in ABA-mediated gene expression. This review mainly focuses on the transcriptional regulation of ABA-mediated gene expression in response to osmotic stress during the vegetative growth stage in Arabidopsis.

804 citations

Journal ArticleDOI
TL;DR: Transgenic Arabidopsis and rice plants overexpressing stress-responsive NAC (SNAC) genes have exhibited improved drought tolerance and indicate that SNAC factors have important roles for the control of abiotic stress tolerance and that their overexpression can improve stress tolerance via biotechnological approaches.

799 citations

Journal ArticleDOI
TL;DR: Analysis of motif enrichment, as well as comparison of transcription factor families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence, which will underpin the development of network models to elucidate the process of Senescence.
Abstract: Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a high-resolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence.

742 citations