scispace - formally typeset
Search or ask a question
Author

Jeremiah W. Murphy

Bio: Jeremiah W. Murphy is an academic researcher from Florida State University. The author has contributed to research in topics: Supernova & Stellar evolution. The author has an hindex of 27, co-authored 72 publications receiving 3119 citations. Previous affiliations of Jeremiah W. Murphy include Johns Hopkins University & National Science Foundation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the first 2D rotating, multigroup, radiation magnetohydrodynamics (RMHD) simulations of supernova core collapse, bounce, and explosion were presented.
Abstract: We present here the first 2D rotating, multigroup, radiation magnetohydrodynamics (RMHD) simulations of supernova core collapse, bounce, and explosion. In the context of rapid rotation, we focus on the dynamical effects of magnetic stresses and the creation and propagation of MHD jets. We find that a quasi-steady state can be quickly established after bounce, during which a well-collimated MHD jet is maintained by continuous pumping of power from the differentially rotating core. If the initial spin period of the progenitor core is 2 s, the free energy reservoir in the secularly evolving proto-neutron star is adequate to power a supernova explosion and may be enough for a hypernova. The jets are well collimated by the infalling material and magnetic hoop stresses and maintain a small opening angle. We see evidence of sausage instabilities in the emerging jet stream. Neutrino heating is subdominant in the rapidly rotating models we explore but can contribute 10%-25% to the final explosion energy. Our simulations suggest that even in the case of modest or slow rotation, a supernova explosion might be followed by a secondary, weak MHD jet explosion, which, because of its weakness, may to date have gone unnoticed in supernova debris. Furthermore, we suggest that the generation of a nonrelativistic MHD precursor jet during the early proto-neutron star/supernova phase is implicit in both the collapsar and millisecond magnetar models of GRBs. The multidimensional, multigroup, rapidly rotating RMHD simulations we describe here are a start along the path toward more realistic simulations of the possible role of magnetic fields in some of nature's most dramatic events.

429 citations

Journal ArticleDOI
Abstract: In this paper we present a new mechanism for core-collapse supernova explosions that relies on acoustic power generated in the inner core as the driver. In our simulation using an 11 M☉ progenitor, an advective-acoustic oscillation a la Foglizzo with a period of ~25-30 ms arises ~200 ms after bounce. Its growth saturates due to the generation of secondary shocks, and kinks in the resulting shock structure funnel and regulate subsequent accretion onto the inner core. However, this instability is not the primary agent of explosion. Rather, it is the acoustic power generated early on in the inner turbulent region stirred by the accretion plumes and, most importantly, but later on, by the excitation and sonic damping of core g-mode oscillations. An l = 1 mode with a period of ~3 ms grows at late times to be prominent around ~500 ms after bounce. The accreting proto-neutron star is a self-excited oscillator, "tuned" to the most easily excited core g-mode. The associated acoustic power seen in our 11 M☉ simulation is sufficient to drive the explosion >550 ms after bounce. The angular distribution of the emitted sound is fundamentally aspherical. The sound pulses radiated from the core steepen into shock waves that merge as they propagate into the outer mantle and deposit their energy and momentum with high efficiency. The ultimate source of the acoustic power is the gravitational energy of infall, and the core oscillation acts like a transducer to convert this accretion energy into sound. An advantage of the acoustic mechanism is that acoustic power does not abate until accretion subsides, so that it is available as long as it may be needed to explode the star. This suggests a natural means by which the supernova is self-regulating.

405 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the criteria for successful core-collapse supernova explosions by the neutrino mechanism and find that a critical-luminosity/mass accretion rate condition distinguishes nonexploding from exploding models in hydrodynamic one-dimensional and two-dimensional (2D) simulations.
Abstract: We investigate the criteria for successful core-collapse supernova explosions by the neutrino mechanism. We find that a critical-luminosity/mass accretion rate condition distinguishes nonexploding from exploding models in hydrodynamic one-dimensional (1D) and two-dimensional (2D) simulations. We present 95 such simulations that parametrically explore the dependence on neutrino luminosity, mass accretion rate, resolution, and dimensionality. While radial oscillations mediate the transition between 1D accretion (nonexploding) and exploding simulations, the nonradial standing accretion shock instability characterizes 2D simulations. We find that it is useful to compare the average dwell time of matter in the gain region with the corresponding heating timescale, but that tracking the residence time distribution function of tracer particles better describes the complex flows in multidimensional simulations. Integral quantities such as the net heating rate, heating efficiency, and mass in the gain region decrease with time in nonexploding models but, for 2D exploding models, increase before, during, and after explosion. At the onset of explosion in 2D, the heating efficiency is ~2%-~5% and the mass in the gain region is ~0.005 to ~0.01 M☉. Importantly, we find that the critical luminosity for explosions in 2D is ~70% of the critical luminosity required in 1D. This result is not sensitive to resolution or whether the 2D computational domain is a quadrant or the full 180°. We suggest that the relaxation of the explosion condition in going from 1D to 2D (and to, perhaps, 3D) is of a general character and is not limited by the parametric nature of this study.

257 citations

Journal ArticleDOI
TL;DR: In this article, the role of the standing accretion shock instability (SASI), the excitation of core g-modes, the generation of core acoustic power, the ejection of matter with r-process potential, the windlike character of the explosion, and the fundamental anisotropy of the blasts are investigated.
Abstract: In the context of 2D, axisymmetric, multigroup, radiation/hydrodynamic simulations of core-collapse supernovae over the full 180° domain, we present an exploration of the progenitor dependence of the acoustic mechanism of explosion. All progenitor models we have tested with our Newtonian code explode. However, some of the cores left behind in our simulations, particularly for the more massive progenitors, have baryon masses that are larger than the canonical ~1.5 M☉ of well-measured pulsars. We investigate the roles of the standing accretion shock instability (SASI), the excitation of core g-modes, the generation of core acoustic power, the ejection of matter with r-process potential, the windlike character of the explosion, and the fundamental anisotropy of the blasts. We find that the breaking of spherical symmetry is central to the supernova phenomenon, the delays to explosion can be long, and the blasts, when top-bottom asymmetric, are self-collimating. We see indications that the initial explosion energies are larger for the more massive progenitors and smaller for the less massive progenitors and that the neutrino contribution to the explosion energy may be an increasing function of progenitor mass. However, the explosion energy is still accumulating by the end of our simulations and has not converged to final values. The degree of explosion asymmetry we obtain is completely consistent with that inferred from the polarization measurements of Type Ic supernovae. Furthermore, we calculate for the first time the magnitude and sign of the net impulse on the core due to anisotropic neutrino emission and suggest that hydrodynamic and neutrino recoils in the context of our asymmetric explosions afford a natural mechanism for observed pulsar proper motions.

233 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compare their parameterized three-dimensional core-collapse supernova simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection.
Abstract: Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the drivin g mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Throug h these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic ener gies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e. Kr ∼ K� + K�). Both results are natural consequences of buoyancy-drive n convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale wit h the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dim ensional motions are consistent with neutrino-driven convection. Subject headings:convection — hydrodynamics — instabilities — methods:analytical — methods: numerical — shock waves — supernovae: general — turbulence

174 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a moving unstructured mesh defined by the Voronoi tessellation of a set of discrete points is used to solve the hyperbolic conservation laws of ideal hydrodynamics with a finite volume approach, based on a second-order unsplit Godunov scheme with an exact Riemann solver.
Abstract: Hydrodynamic cosmological simulations at present usually employ either the Lagrangian smoothed particle hydrodynamics (SPH) technique or Eulerian hydrodynamics on a Cartesian mesh with (optional) adaptive mesh refinement (AMR). Both of these methods have disadvantages that negatively impact their accuracy in certain situations, for example the suppression of fluid instabilities in the case of SPH, and the lack of Galilean invariance and the presence of overmixing in the case of AMR. We here propose a novel scheme which largely eliminates these weaknesses. It is based on a moving unstructured mesh defined by the Voronoi tessellation of a set of discrete points. The mesh is used to solve the hyperbolic conservation laws of ideal hydrodynamics with a finite-volume approach, based on a second-order unsplit Godunov scheme with an exact Riemann solver. The mesh-generating points can in principle be moved arbitrarily. If they are chosen to be stationary, the scheme is equivalent to an ordinary Eulerian method with second-order accuracy. If they instead move with the velocity of the local flow, one obtains a Lagrangian formulation of continuum hydrodynamics that does not suffer from the mesh distortion limitations inherent in other mesh-based Lagrangian schemes. In this mode, our new method is fully Galilean invariant, unlike ordinary Eulerian codes, a property that is of significant importance for cosmological simulations where highly supersonic bulk flows are common. In addition, the new scheme can adjust its spatial resolution automatically and continuously, and hence inherits the principal advantage of SPH for simulations of cosmological structure growth. The high accuracy of Eulerian methods in the treatment of shocks is also retained, while the treatment of contact discontinuities improves. We discuss how this approach is implemented in our new code arepo, both in 2D and in 3D, and is parallelized for distributed memory computers. We also discuss techniques for adaptive refinement or de-refinement of the unstructured mesh. We introduce an individual time-step approach for finite-volume hydrodynamics, and present a high-accuracy treatment of self-gravity for the gas that allows the new method to be seamlessly combined with a high-resolution treatment of collisionless dark matter. We use a suite of test problems to examine the performance of the new code and argue that the hydrodynamic moving-mesh scheme proposed here provides an attractive and competitive alternative to current SPH and Eulerian techniques.

1,778 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that most long-duration soft-spectrum gamma-ray bursts are accompanied by massive stellar explosions (GRB-SNe) and that most of the energy in the explosion is contained in nonrelativistic ejecta (producing the supernova) rather than in the relativistic jets responsible for making the burst and its afterglow.
Abstract: Observations show that at least some gamma-ray bursts (GRBs) happen simultaneously with core-collapse supernovae (SNe), thus linking by a common thread nature's two grandest explosions. We review here the growing evidence for and theoretical implications of this association, and conclude that most long-duration soft-spectrum GRBs are accompanied by massive stellar explosions (GRB-SNe). The kinetic energy and luminosity of well-studied GRB-SNe appear to be greater than those of ordinary SNe, but evidence exists, even in a limited sample, for considerable diversity. The existing sample also suggests that most of the energy in the explosion is contained in nonrelativistic ejecta (producing the supernova) rather than in the relativistic jets responsible for making the burst and its afterglow. Neither all SNe, nor even all SNe of Type Ibc produce GRBs. The degree of differential rotation in the collapsing iron core of massive stars when they die may be what makes the difference.

1,389 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the recent progress in finding the progenitors of core-collapse supernovae and the physical mechanism of the explosion. But they did not discuss the physical mechanisms of the supernova explosion.
Abstract: Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova (SN) has converged to 8 ± 1 M⊙ from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc SNe arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic SNe are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above ∼20 M⊙ may collapse quietly to black holes and that the explosions remain undetected. The recent discovery of a class of ultrabright type II SNe and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggest some very massive stars do produce highly energetic explosions. The physical mechanism is under debate, and t...

1,198 citations

Journal ArticleDOI
TL;DR: In this article, an updated physical model to simulate the formation and evolution of galaxies in cosmological, large-scale gravity+magnetohydrodynamical simulations with the moving mesh code AREPO is introduced.
Abstract: We introduce an updated physical model to simulate the formation and evolution of galaxies in cosmological, large-scale gravity+magnetohydrodynamical simulations with the moving mesh code AREPO. The overall framework builds upon the successes of the Illustris galaxy formation model, and includes prescriptions for star formation, stellar evolution, chemical enrichment, primordial and metal-line cooling of the gas, stellar feedback with galactic outflows, and black hole formation, growth and multi-mode feedback. In this paper we give a comprehensive description of the physical and numerical advances which form the core of the IllustrisTNG (The Next Generation) framework. We focus on the revised implementation of the galactic winds, of which we modify the directionality, velocity, thermal content, and energy scalings, and explore its effects on the galaxy population. As described in earlier works, the model also includes a new black hole driven kinetic feedback at low accretion rates, magnetohydrodynamics, and improvements to the numerical scheme. Using a suite of (25 Mpc $h^{-1}$)$^3$ cosmological boxes we assess the outcome of the new model at our fiducial resolution. The presence of a self-consistently amplified magnetic field is shown to have an important impact on the stellar content of $10^{12} M_{\rm sun}$ haloes and above. Finally, we demonstrate that the new galactic winds promise to solve key problems identified in Illustris in matching observational constraints and affecting the stellar content and sizes of the low mass end of the galaxy population.

1,105 citations