scispace - formally typeset
Search or ask a question
Author

Jeremy J. Martinson

Bio: Jeremy J. Martinson is an academic researcher from University of Pittsburgh. The author has contributed to research in topics: Multicenter AIDS Cohort Study & Single-nucleotide polymorphism. The author has an hindex of 27, co-authored 53 publications receiving 3666 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Significant nonrandom association between two markers located 22 cM apart (FY-null and AT3) is detected, most likely due to admixture linkage disequilibrium created in the interbreeding of the two parental populations, emphasize the importance of admixed populations as a useful resource for mapping traits with different prevalence in two parental population.
Abstract: We analyzed the European genetic contribution to 10 populations of African descent in the United States (Maywood, Illinois; Detroit; New York; Philadelphia; Pittsburgh; Baltimore; Charleston, South Carolina; New Orleans; and Houston) and in Jamaica, using nine autosomal DNA markers. These markers either are population-specific or show frequency differences >45% between the parental populations and are thus especially informative for admixture. European genetic ancestry ranged from 6.8% (Jamaica) to 22.5% (New Orleans). The unique utility of these markers is reflected in the low variance associated with these admixture estimates (SEM 1.3%-2.7%). We also estimated the male and female European contribution to African Americans, on the basis of informative mtDNA (haplogroups H and L) and Y Alu polymorphic markers. Results indicate a sex-biased gene flow from Europeans, the male contribution being substantially greater than the female contribution. mtDNA haplogroups analysis shows no evidence of a significant maternal Amerindian contribution to any of the 10 populations. We detected significant nonrandom association between two markers located 22 cM apart (FY-null and AT3), most likely due to admixture linkage disequilibrium created in the interbreeding of the two parental populations. The strength of this association and the substantial genetic distance between FY and AT3 emphasize the importance of admixed populations as a useful resource for mapping traits with different prevalence in two parental populations.

769 citations

Journal ArticleDOI
TL;DR: It is found that Δccr5 is not confined to people of European descent but is found at frequencies of 2–5% throughout Europe, the Middle East and the Indian subcontinent, but these most likely represent recent European gene flow into the indigenous populations.
Abstract: A mutant allele of the beta-chemokine receptor gene CCR5 bearing a 32-basepair (bp) deletion (denoted delta ccr5) which prevents cell invasion by the primary transmitting strain of HIV-1 has recently been characterized. Homozygotes for the mutation are resistant to infection, even after repeated high-risk exposures, but this resistance appears not to be total, as isolated cases of HIV-positive deletion homozygotes are now emerging. The consequence of the heterozygous state is not clear, but it may delay the progression to AIDS in infected individuals. A gene frequency of approximately 10% was found for delta ccr5 in populations of European descent, but no mutant alleles were reported in indigenous non-European populations. As the total number of non-European samples surveyed was small in comparison with the Europeans the global distribution of this mutation is far from clear. We have devised a rapid PCR assay for delta ccr5 and used it to screen 3,342 individuals from a globally-distributed range of populations. We find that delta ccr5 is not confined to people of European descent but is found at frequencies of 2-5% throughout Europe, the Middle East and the Indian subcontinent (Fig. 1). Isolated occurrences are seen elsewhere throughout the world, but these most likely represent recent European gene flow into the indigenous populations. The inter-population differences in delta ccr5 frequency may influence the pattern of HIV transmission and so will need to be incorporated into future predictions of HIV levels.

541 citations

Journal Article
01 Jan 2009-PLOS ONE
TL;DR: The authors performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects and found common genetic variants explaining down to 1.3% of the variability in viral load at set point.
Abstract: To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians.

395 citations

Journal ArticleDOI
TL;DR: This study provides overwhelming confirmation of three associations previously reported in a genome-wide study and shows further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC).
Abstract: To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians.

388 citations

Journal ArticleDOI
TL;DR: Using LDSC, significant genetic correlations between immune‐related disorders and several psychiatric disorders, including anorexia nervosa, attention deficit‐hyperactivity disorder, bipolar disorder, major depression, obsessive compulsive disorder, schizophrenia, smoking behavior, and Tourette syndrome are observed.
Abstract: Individuals with psychiatric disorders have elevated rates of autoimmune comorbidity and altered immune signaling. It is unclear whether these altered immunological states have a shared genetic basis with those psychiatric disorders. The present study sought to use existing summary-level data from previous genome-wide association studies to determine if commonly varying single nucleotide polymorphisms are shared between psychiatric and immune-related phenotypes. We estimated heritability and examined pair-wise genetic correlations using the linkage disequilibrium score regression (LDSC) and heritability estimation from summary statistics methods. Using LDSC, we observed significant genetic correlations between immune-related disorders and several psychiatric disorders, including anorexia nervosa, attention deficit-hyperactivity disorder, bipolar disorder, major depression, obsessive compulsive disorder, schizophrenia, smoking behavior, and Tourette syndrome. Loci significantly mediating genetic correlations were identified for schizophrenia when analytically paired with Crohn's disease, primary biliary cirrhosis, systemic lupus erythematosus, and ulcerative colitis. We report significantly correlated loci and highlight those containing genome-wide associations and candidate genes for respective disorders. We also used the LDSC method to characterize genetic correlations among the immune-related phenotypes. We discuss our findings in the context of relevant genetic and epidemiological literature, as well as the limitations and caveats of the study.

153 citations


Cited by
More filters
Journal ArticleDOI
01 Jun 2000-Genetics
TL;DR: Pritch et al. as discussed by the authors proposed a model-based clustering method for using multilocus genotype data to infer population structure and assign individuals to populations, which can be applied to most of the commonly used genetic markers, provided that they are not closely linked.
Abstract: We describe a model-based clustering method for using multilocus genotype data to infer population structure and assign individuals to populations. We assume a model in which there are K populations (where K may be unknown), each of which is characterized by a set of allele frequencies at each locus. Individuals in the sample are assigned (probabilistically) to populations, or jointly to two or more populations if their genotypes indicate that they are admixed. Our model does not assume a particular mutation process, and it can be applied to most of the commonly used genetic markers, provided that they are not closely linked. Applications of our method include demonstrating the presence of population structure, assigning individuals to populations, studying hybrid zones, and identifying migrants and admixed individuals. We show that the method can produce highly accurate assignments using modest numbers of loci— e.g. , seven microsatellite loci in an example using genotype data from an endangered bird species. The software used for this article is available from http://www.stats.ox.ac.uk/~pritch/home.html.

27,454 citations

Journal ArticleDOI
01 Aug 2003-Genetics
TL;DR: Extensions to the method of Pritchard et al. for inferring population structure from multilocus genotype data are described and methods that allow for linkage between loci are developed, which allows identification of subtle population subdivisions that were not detectable using the existing method.
Abstract: We describe extensions to the method of Pritchard et al. for inferring population structure from multilocus genotype data. Most importantly, we develop methods that allow for linkage between loci. The new model accounts for the correlations between linked loci that arise in admixed populations (“admixture linkage disequilibium”). This modification has several advantages, allowing (1) detection of admixture events farther back into the past, (2) inference of the population of origin of chromosomal regions, and (3) more accurate estimates of statistical uncertainty when linked loci are used. It is also of potential use for admixture mapping. In addition, we describe a new prior model for the allele frequencies within each population, which allows identification of subtle population subdivisions that were not detectable using the existing method. We present results applying the new methods to study admixture in African-Americans, recombination in Helicobacter pylori , and drift in populations of Drosophila melanogaster . The methods are implemented in a program, structure , version 2.0, which is available at http://pritch.bsd.uchicago.edu.

7,615 citations

Journal ArticleDOI
TL;DR: In this paper, the chemokine receptors CXCR4 and CCR5, members of the G protein-coupled receptor superfamily, have been identified as the principal coreceptors for T cell line-tropic and macrophagetropic HIV-1 isolates, respectively.
Abstract: In addition to CD4, the human immunodeficiency virus (HIV) requires a coreceptor for entry into target cells. The chemokine receptors CXCR4 and CCR5, members of the G protein-coupled receptor superfamily, have been identified as the principal coreceptors for T cell line-tropic and macrophage-tropic HIV-1 isolates, respectively. The updated coreceptor repertoire includes numerous members, mostly chemokine receptors and related orphans. These discoveries provide a new framework for understanding critical features of the basic biology of HIV-1, including the selective tropism of individual viral variants for different CD4 C target cells and the membrane fusion mechanism governing virus entry. The coreceptors also provide molecular perspectives on central puzzles of HIV-1 disease, including the selective transmission of macrophage-tropic variants, the appearance of T cell line-tropic variants in many infected persons during progression to AIDS, and differing susceptibilities of individuals to infection and disease progression. Genetic findings have yielded major insights into the in vivo roles of individual coreceptors and their ligands; of particular importance is the discovery of an inactivating mutation in the CCR5 gene which, in homozygous form, confers strong resistance to HIV-1 infection. Beyond providing new perspectives on fundamental aspects of HIV-1 transmission and pathogenesis, the coreceptors suggest new avenues for developing novel therapeutic and preventative strategies to combat the AIDS epidemic.

2,245 citations

Journal ArticleDOI
TL;DR: This article describes a novel, statistically valid, method for case-control association studies in structured populations that uses a set of unlinked genetic markers to infer details of population structure, and to estimate the ancestry of sampled individuals, before using this information to test for associations within subpopulations.
Abstract: The use, in association studies, of the forthcoming dense genomewide collection of single-nucleotide polymorphisms (SNPs) has been heralded as a potential breakthrough in the study of the genetic basis of common complex disorders. A serious problem with association mapping is that population structure can lead to spurious associations between a candidate marker and a phenotype. One common solution has been to abandon case-control studies in favor of family-based tests of association, such as the transmission/disequilibrium test (TDT), but this comes at a considerable cost in the need to collect DNA from close relatives of affected individuals. In this article we describe a novel, statistically valid, method for case-control association studies in structured populations. Our method uses a set of unlinked genetic markers to infer details of population structure, and to estimate the ancestry of sampled individuals, before using this information to test for associations within subpopulations. It provides power comparable with the TDT in many settings and may substantially outperform it if there are conflicting associations in different subpopulations.

1,904 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of miRNA dysregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells and the potential to develop new molecular miRNA-targeted therapies are discussed.
Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that typically inhibit the translation and stability of messenger RNAs (mRNAs), controlling genes involved in cellular processes such as inflammation, cell-cycle regulation, stress response, differentiation, apoptosis, and migration. Thus, miRNAs have been implicated in the regulation of virtually all signaling circuits within a cell, and their dysregulation has been shown to play an essential role in the development and progression of cancer. Here, after a brief description of miRNA genomics, biogenesis, and function, we discuss the effects of miRNA dysregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells and the potential to develop new molecular miRNA-targeted therapies.

1,899 citations