scispace - formally typeset
Search or ask a question
Author

Jeremy S. Tiemann

Bio: Jeremy S. Tiemann is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Drainage basin & Endangered species. The author has an hindex of 11, co-authored 55 publications receiving 638 citations. Previous affiliations of Jeremy S. Tiemann include Emporia State University & Illinois Natural History Survey.


Papers
More filters
Journal ArticleDOI
TL;DR: Comparison of modern to background extinction rates reveals that gastropods have the highest modern extinction rate yet observed, 9,539 times greater than background rates.
Abstract: This is the first American Fisheries Society conservation assessment of freshwater gastropods (snails) from Canada and the United States by the Gastropod Subcommittee (Endangered Species Committee). This review covers 703 species representing 16 families and 93 genera, of which 67 species are considered extinct, or possibly extinct, 278 are endangered, 102 are threatened, 73 are vulnerable, 157 are currently stable, and 26 species have uncertain taxonomic status. Of the entire fauna, 74% of gastropods are imperiled (vulnerable, threatened, endangered) or extinct, which exceeds imperilment levels in fishes (39%) and crayfishes (48%) but is similar to that of mussels (72%). Comparison of modern to background extinction rates reveals that gastropods have the highest modern extinction rate yet observed, 9,539 times greater than background rates. Gastropods are highly susceptible to habitat loss and degradation, particularly narrow endemics restricted to a single spring or short stream reaches. Compil...

172 citations

Journal ArticleDOI
TL;DR: In this article, a portfolio of priority research topics for freshwater mussel conservation assessment is developed, which can guide conservation status assessments prior to the establishment of priority species and implementation of conservation management actions.

136 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of lowhead dams on fishes and macroinvertebrates were examined by using a multivariate analysis of variance, which indicated that habitat, but not physicochemistry, varied immediately upstream and downstream from the dams, with resultant effects on macroinvetebrate and fish assemblages.
Abstract: Many studies have assessed the effects of large dams on fishes and macroinvertebrates, but few have examined the effects of lowhead dams. We sampled fishes, macroinvertebrates, habitat, and physicochemistry monthly from November 2000 to October 2001 at eight gravel bar sites centered around two lowhead dams on the Neosho River, Kansas. Sites included a reference site and a treatment site both upstream and downstream from each dam. Multivariate analysis of variance indicated that habitat, but not physicochemistry, varied immediately upstream and downstream from the dams, with resultant effects on macroinvertebrate and fish assemblages. Compared with reference sites, upstream treatment sites were deeper and had lower velocities and downstream treatment sites were shallower and had higher velocities; both upstream and downstream treatment sites had greater substrate compaction than reference sites. Macroinvertebrate richness did not differ among site types, but abundance was lowest at downstream tre...

134 citations

Journal ArticleDOI
01 Aug 2005-Copeia
TL;DR: In this article, the authors studied spatiotemporal patterns of fish assemblage structure in the Neosho River, a system impounded by low-head dams and found that the spatial variation in the assemblages was related to the location of dams.
Abstract: We studied spatiotemporal patterns of fish assemblage structure in the Neosho River, Kansas, a system impounded by low-head dams. Spatial variation in the fish assemblage was related to the location of dams that created alternating lotic and lentic stream reaches with differing fish assemblages. At upstream sites close to dams, assemblages were characterized by species associated with deeper, slower-flowing habitat. Assemblages at sites immediately downstream from dams had higher abundance of species common to shallow, swift-flowing habitat. Temporal variation in assemblage structure was stronger than spatial variation, and was associated with fish life history events such as spawning and recruitment, as well as seasonal changes in environmental conditions. Our results suggest that low-head dams can influence spatial patterns of fish assemblage structure in systems such as the Neosho River and that such assemblages also vary seasonally.

68 citations


Cited by
More filters
Journal ArticleDOI
30 May 2014-Science
TL;DR: The biodiversity of eukaryote species and their extinction rates, distributions, and protection is reviewed, and what the future rates of species extinction will be, how well protected areas will slow extinction Rates, and how the remaining gaps in knowledge might be filled are reviewed.
Abstract: Background A principal function of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) is to “perform regular and timely assessments of knowledge on biodiversity.” In December 2013, its second plenary session approved a program to begin a global assessment in 2015. The Convention on Biological Diversity (CBD) and five other biodiversity-related conventions have adopted IPBES as their science-policy interface, so these assessments will be important in evaluating progress toward the CBD’s Aichi Targets of the Strategic Plan for Biodiversity 2011–2020. As a contribution toward such assessment, we review the biodiversity of eukaryote species and their extinction rates, distributions, and protection. We document what we know, how it likely differs from what we do not, and how these differences affect biodiversity statistics. Interestingly, several targets explicitly mention “known species”—a strong, if implicit, statement of incomplete knowledge. We start by asking how many species are known and how many remain undescribed. We then consider by how much human actions inflate extinction rates. Much depends on where species are, because different biomes contain different numbers of species of different susceptibilities. Biomes also suffer different levels of damage and have unequal levels of protection. How extinction rates will change depends on how and where threats expand and whether greater protection counters them. Different visualizations of species biodiversity. ( A ) The distributions of 9927 bird species. ( B ) The 4964 species with smaller than the median geographical range size. ( C ) The 1308 species assessed as threatened with a high risk of extinction by BirdLife International for the Red List of Threatened Species of the International Union for Conservation of Nature. ( D ) The 1080 threatened species with less than the median range size. (D) provides a strong geographical focus on where local conservation actions can have the greatest global impact. Additional biodiversity maps are available at www.biodiversitymapping.org. Advances Recent studies have clarified where the most vulnerable species live, where and how humanity changes the planet, and how this drives extinctions. These data are increasingly accessible, bringing greater transparency to science and governance. Taxonomic catalogs of plants, terrestrial vertebrates, freshwater fish, and some marine taxa are sufficient to assess their status and the limitations of our knowledge. Most species are undescribed, however. The species we know best have large geographical ranges and are often common within them. Most known species have small ranges, however, and such species are typically newer discoveries. The numbers of known species with very small ranges are increasing quickly, even in well-known taxa. They are geographically concentrated and are disproportionately likely to be threatened or already extinct. We expect unknown species to share these characteristics. Current rates of extinction are about 1000 times the background rate of extinction. These are higher than previously estimated and likely still underestimated. Future rates will depend on many factors and are poised to increase. Finally, although there has been rapid progress in developing protected areas, such efforts are not ecologically representative, nor do they optimally protect biodiversity. Outlook Progress on assessing biodiversity will emerge from continued expansion of the many recently created online databases, combining them with new global data sources on changing land and ocean use and with increasingly crowdsourced data on species’ distributions. Examples of practical conservation that follow from using combined data in Colombia and Brazil can be found at www.savingspecies.org and www.youtube.com/watch?v=R3zjeJW2NVk.

2,360 citations

Journal ArticleDOI
TL;DR: Identification of factors that eliminated mussels from many otherwise intact streams is critical and Translocation and captive propagation will be key elements in reestablishing mussel assemblages in restored habitats, but these techniques should be used with caution and primarily to increase the occurrence of a species throughout its historical range.
Abstract: The North America freshwater mussel fauna has suffered an inordinately high recent extinc- tion rate, and the small size and isolation of many remaining populations portends a continued diminish- ment of this fauna. Causes of extinction and imperil- ment are varied but revolve around massive habitat loss, deterioration, and fragmentation. The National Strategy for the Conservation of Native Mussels, published in 1997, has guided efforts to address this crisis. Considerable progress has been made toward several of the Strategies' goals, particularly increasing our knowledge of mussel biology, promoting mussel conservation, and development of techniques for captive mussel propagation. However, mussel conser- vation should focus more directly on reducing frag- mentation through bold and aggressive habitat restoration. In addition to dam removal, improvement in dam tailwater flows, and restoration of channelized streams, identification of factors that eliminated mussels from many otherwise intact streams is critical. Translocation and captive propagation will be key elements in reestablishing mussel assemblages in restored habitats, but these techniques should be used with caution and primarily to increase the occurrence of a species throughout its historical range. Conserving mussel diversity in an ever-changing world is depen- dent on promoting the natural, long-term sustainability and evolutionary potential of mussel populations.

270 citations

11 Sep 2013
TL;DR: In this paper, the authors quantified the economic, social, and ecological value and magnitude of ecosystem services provided by mussels, across species, habitats, and environmental conditions, and scaled up to whole watersheds.
Abstract: Ecosystem services are the benefits that humans derive from ecosystems. Freshwater mussels perform many important functions in aquatic ecosystems, which can in turn be framed as the ecosystem services that they contribute to or provide. These include supporting services such as nutrient recycling and storage, structural habitat, substrate and food web modification, and use as environmental monitors; regulating services such as water purification (biofiltration); and provisioning and cultural services including use as a food source, as tools and jewelry, and for spiritual enhancement. Mussel-provided ecosystem services are declining because of large declines in mussel abundance. Mussel propagation could be used to restore populations of common mussel species and their ecosystem services. We need much more quantification of the economic, social, and ecological value and magnitude of ecosystem services provided by mussels, across species, habitats, and environmental conditions, and scaled up to whole watersheds. In addition, we need tools that will allow us to value mussel ecosystem services in a way that is understandable to both the public and to policy makers.

243 citations

Journal ArticleDOI
TL;DR: A database of > 100 traits for 809 fish species found in freshwaters of the conterminous United States, including 37 native families and 145 native genera is compiled.
Abstract: The need for integrated and widely accessible sources of species traits data to facilitate studies of ecology, conservation, and management has motivated development of traits databases for various taxa. In spite of the increasing number of traits-based analyses of freshwater fishes in the United States, no consolidated database of traits of this group exists publicly, and much useful information on these species is documented only in obscure sources. The largely inaccessible and unconsolidated traits information makes large-scale analysis involving many fishes and/or traits particularly challenging. We have compiled a database of > 100 traits for 809 (731 native and 78 nonnative) fish species found in freshwaters of the conterminous United States, including 37 native families and 145 native genera. The database, named Fish Traits, contains information on four major categories of traits: (1) trophic ecology; (2) body size, reproductive ecology, and life history; (3) habitat preferences; and (4) s...

228 citations