scispace - formally typeset
Search or ask a question
Author

Jeroen Bouwman

Bio: Jeroen Bouwman is an academic researcher from Max Planck Society. The author has contributed to research in topics: Planetary system & Stars. The author has an hindex of 65, co-authored 169 publications receiving 11544 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present spectroscopic observations of a large sample of Herbig Ae stars in the 10 µm spectral region and perform compositional fits of the spectra based on properties of homogeneous as well as inhomogeneous spherical particles.
Abstract: We present spectroscopic observations of a large sample of Herbig Ae stars in the 10 µm spectral region. We perform compositional fits of the spectra based on properties of homogeneous as well as inhomogeneous spherical particles, and derive the mineralogy and typical grain sizes of the dust responsible for the 10 µm emission. Several trends are reported that can constrain theoretical models of dust processing in these systems: i) none of the sources consists of fully pristine dust comparable to that found in the interstellar medium; ii) all sources with a high fraction of crystalline silicates are dominated by large grains; iii) the disks around more massive stars (M > 2.5 M� , L > 60 L� ) have a higher fraction of crystalline silicates than those around lower mass stars, iv) in the subset of lower mass stars (M < 2.5 M� ) there is no correlation between stellar parameters and the derived crystallinity of the dust. The correlation between the shape and strength of the 10 micron silicate feature reported by van Boekel et al. (2003) is reconfirmed with this larger sample. The evidence presented in this paper is combined with that of other studies to present a likely scenario of dust processing in Herbig Ae systems. We conclude that the present data favour a scenario in which the crystalline silicates are produced in the innermost regions of the disk, close to the star, and transported outward to the regions where they can be detected by means of 10 micron spectroscopy. Additionally, we conclude that the final crystallinity of these disks is reached very soon after active accretion has stopped.

330 citations

Journal ArticleDOI
TL;DR: The potential of the James Webb Space Telescope (JWST) to revolutionize our knowledge of the physical properties of exoplanets through transit observations was discussed in a workshop held on March 14, 2014 as discussed by the authors.
Abstract: This article summarizes a workshop held on March, 2014, on the potential of the James Webb Space Telescope (JWST) to revolutionize our knowledge of the physical properties of exoplanets through transit observations. JWST’s unique combination of high sensitivity and broad wavelength coverage will enable the accurate measurement of transits with high signal-to-noise ratio (S/N). Most importantly, JWST spectroscopy will investigate planetary atmospheres to determine atomic and molecular compositions, to probe vertical and horizontal structure, and to follow dynamical evolution, i.e., exoplanet weather. JWST will sample a diverse population of planets of varying masses and densities in a wide variety of environments characterized by a range of host star masses and metallicities, orbital semi-major axes, and eccentricities. A broad program of exoplanet science could use a substantial fraction of the overall JWST mission.

330 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the first near-IR scattered light detection of the transitional disk associated with the Herbig Ae star MWC 758 using data obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru, and 1.1 {$μ$}m Hubble Space Telescope/NICMOS data.
Abstract: We present the first near-IR scattered light detection of the transitional disk associated with the Herbig Ae star MWC 758 using data obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru, and 1.1 {$μ$}m Hubble Space Telescope/NICMOS data. While submillimeter studies suggested there is a dust-depleted cavity with r = 0.''35, we find scattered light as close as 0.''1 (20-28 AU) from the star, with no visible cavity at H, K', or K$_s$ . We find two small-scaled spiral structures that asymmetrically shadow the outer disk. We model one of the spirals using spiral density wave theory, and derive a disk aspect ratio of h ~{} 0.18, indicating a dynamically warm disk. If the spiral pattern is excited by a perturber, we estimate its mass to be 5$^{+3}$ $_{- 4}$ M$_J$ , in the range where planet filtration models predict accretion continuing onto the star. Using a combination of non-redundant aperture masking data at L' and angular differential imaging with Locally Optimized Combination of Images at K' and K$_s$ , we exclude stellar or massive brown dwarf companions within 300 mas of the Herbig Ae star, and all but planetary mass companions exterior to 0.''5. We reach 5{$σ$} contrasts limiting companions to planetary masses, 3-4 M$_J$ at 1.''0 and 2 M$_J$ at 1.''55, using the COND models. Collectively, these data strengthen the case for MWC 758 already being a young planetary system.

283 citations

Journal ArticleDOI
TL;DR: In this paper, the dayside spectrum of HD 209458b between 1.5 and 2.5 μm was measured using the NICMOS instrument on the Hubble Space Telescope.
Abstract: Using the NICMOS instrument on the Hubble Space Telescope, we have measured the dayside spectrum of HD 209458b between 1.5 and 2.5 μm. The emergent spectrum is dominated by features due to the presence of methane (CH4) and water vapor (H2O), with smaller contributions from carbon dioxide (CO2). Combining this near-infrared spectrum with existing mid-infrared measurements shows the existence of a temperature inversion and confirms the interpretation of previous photometry measurements. We find a family of plausible solutions for the molecular abundance and detailed temperature profile. Observationally resolving the ambiguity between abundance and temperature requires either (1) improved wavelength coverage or spectral resolution of the dayside emission spectrum or (2) a transmission spectrum where abundance determinations are less sensitive to the temperature structure.

281 citations

Journal ArticleDOI
TL;DR: In this article, the dayside spectrum of HD 189733b between 1.5 and 2.5 μm was measured using the NICMOS instrument on the Hubble Space Telescope, and the authors found that water, carbon monoxide (CO), and carbon dioxide (CO2) are needed to explain the observations.
Abstract: We have measured the dayside spectrum of HD 189733b between 1.5 and 2.5 μm using the NICMOS instrument on the Hubble Space Telescope. The emergent spectrum contains significant modulation, which we attribute to the presence of molecular bands seen in absorption. We find that water (H2O), carbon monoxide (CO), and carbon dioxide (CO2) are needed to explain the observations, and we are able to estimate the mixing ratios for these molecules. We also find temperature decreases with altitude in the ~0.01 < P< ~1 bar region of the dayside near-infrared photosphere and set an upper limit to the dayside abundance of methane (CH4) at these pressures.

280 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Multiband Imaging Photometer for Spitzer (MIPS) as discussed by the authors provides long-wavelength capability for the mission in imaging bands at 24, 70, and 160?m and measurements of spectral energy distributions between 52 and 100?m at a spectral resolution of about 7%.
Abstract: The Multiband Imaging Photometer for Spitzer (MIPS) provides long-wavelength capability for the mission in imaging bands at 24, 70, and 160 ?m and measurements of spectral energy distributions between 52 and 100 ?m at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point-spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The 24 ?m array has excellent photometric properties, and measurements with rms relative errors of about 1% can be obtained. The two longer-wavelength arrays use detectors with poor photometric stability, but a system of onboard stimulators used for relative calibration, combined with a unique data pipeline, produce good photometry with rms relative errors of less than 10%.

2,370 citations

Journal ArticleDOI
TL;DR: In this article, the intrinsic colors and temperatures of 5-30 Myr old pre-main sequence (pre-MS) stars were analyzed using optical spectra taken with the SMARTS 1.5m telescope.
Abstract: We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main sequence (pre-MS) stars using the F0 through M9 type members of nearby, negligibly reddened groups: η Cha cluster, TW Hydra Association, β Pic Moving Group, and Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5m telescope. Combining these new types with published spectral types, and photometry from the literature (Johnson-Cousins BV IC, 2MASS JHKS and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (Teff) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new Teff and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new Teff scale for pre-MS stars is within ≃100 K of dwarfs at a given spectral type for stars

1,811 citations

Journal ArticleDOI
TL;DR: In this article, a large set of theoretical isochrones are presented, whose distinctive features mostly reside on the greatly improved treatment of the thermally-pulsing asymptotic giant branch (TP-AGB) phase.
Abstract: We present a large set of theoretical isochrones, whose distinctive features mostly reside on the greatly-improved treatment of the thermally-pulsing asymptotic giant branch (TP-AGB) phase. Essentially, we have coupled the TP-AGB tracks described in Paper I, at their stages of pre-flash quiescent H-shell burning, with the evolutionary tracks for the previous evolutionary phases from Girardi et al. (2000, AA the bell-shaped sequences in the Hertzsprung-Russell (HR) diagram for stars with hot-bottom burning; the changes of pulsation mode between fundamental and first overtone; the sudden changes of mean mass-loss rates as the surface chemistry changes from M- to C-type; etc. Theoretical isochrones are then converted to about 20 different photometric systems - including traditional ground-based systems, and those of recent major wide-field surveys such as SDSS, OGLE, DENIS, 2MASS, UKIDSS, etc., - by means of synthetic photometry applied to an updated library of stellar spectra, suitably extended to include C-type stars. Finally, we correct the predicted photometry for the effect of circumstellar dust during the mass-losing stages of the AGB evolution, which allows us to improve the results for the optical-to-infrared systems, and to simulate mid- and far-IR systems such as those of Spitzer and AKARI. We illustrate the most striking properties of these isochrones by means of basic comparisons with observational data for the Milky Way disc and the Magellanic Clouds. Access to the data is provided both via a web repository of static tables (http://stev.oapd.inaf.it/ dustyAGB07 and CDS), and via an interactive web interface (http://stev.oapd. inaf. it/cmd), which provides tables for any intermediate value of age and metallicity, for several photometric systems, and for different choices of dust properties.

1,740 citations

Journal ArticleDOI
TL;DR: The James Webb Space Telescope (JWST) as discussed by the authors is a large (6.6 m), cold (<50 K), infrared-optimized space observatory that will be launched early in the next decade into orbit around the second Earth-Sun Lagrange point.
Abstract: The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m. The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations. To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.

1,372 citations

Journal ArticleDOI
TL;DR: A review of the outer parts, beyond 1 AU, of protoplanetary disks with a focus on recent IR and (sub)millimeter results can be found in this paper.
Abstract: Flattened, rotating disks of cool dust and gas extending for tens to hundreds of astronomical units are found around almost all low-mass stars shortly after their birth. These disks generally persist for several million years, during which time some material accretes onto the star, some is lost through outflows and photoevaporation, and some condenses into centimeter- and larger-sized bodies or planetesimals. Through observations mainly at IR through millimeter wavelengths, we can determine how common disks are at different ages; measure basic properties including mass, size, structure, and composition; and follow their varied evolutionary pathways. In this way, we see the first steps toward exoplanet formation and learn about the origins of the Solar System. This review addresses observations of the outer parts, beyond 1 AU, of protoplanetary disks with a focus on recent IR and (sub)millimeter results and an eye to the promise of new facilities in the immediate future.

1,366 citations