scispace - formally typeset
Search or ask a question
Author

Jeroen Wigard

Bio: Jeroen Wigard is an academic researcher from Nokia. The author has contributed to research in topics: Telecommunications link & User equipment. The author has an hindex of 27, co-authored 138 publications receiving 2435 citations. Previous affiliations of Jeroen Wigard include Nokia Networks & Aalborg University.


Papers
More filters
Journal ArticleDOI
TL;DR: The results show that path loss exponent decreases as the UAV moves up, approximating freespace propagation for horizontal ranges up to tens of kilometers at UAV heights around 100 m.
Abstract: The main goal of this letter is to obtain models for path loss exponents and shadowing for the radio channel between airborne unmanned aerial vehicles (UAVs) and cellular networks In this pursuit, field measurements were conducted in live LTE networks at the 800 MHz frequency band, using a commercial UAV Our results show that path loss exponent decreases as the UAV moves up, approximating freespace propagation for horizontal ranges up to tens of kilometers at UAV heights around 100 m Our findings support the need of height-dependent parameters for describing the propagation channel for UAVs at different heights

289 citations

Journal ArticleDOI
TL;DR: This paper investigates the performance of aerial radio connectivity in a typical rural area network deployment using extensive channel measurements and system simulations, and introduces and evaluates a novel downlink inter-cell interference coordination mechanism applied to the aerial command and control traffic.
Abstract: Widely deployed cellular networks are an attractive solution to provide large scale radio connectivity to unmanned aerial vehicles. One main prerequisite is that co-existence and optimal performance for both aerial and terrestrial users can be provided. Today’s cellular networks are, however, not designed for aerial coverage, and deployments are primarily optimized to provide good service for terrestrial users. These considerations, in combination with the strict regulatory requirements, lead to extensive research and standardization efforts to ensure that the current cellular networks can enable reliable operation of aerial vehicles in various deployment scenarios. In this paper, we investigate the performance of aerial radio connectivity in a typical rural area network deployment using extensive channel measurements and system simulations. First, we highlight that downlink and uplink radio interference play a key role, and yield relatively poor performance for the aerial traffic, when load is high in the network. Second, we analyze two potential terminal side interference mitigation solutions: interference cancellation and antenna beam selection. We show that each of these can improve the overall, aerial and terrestrial, system performance to a certain degree, with up to 30% throughput gain, and an increase in the reliability of the aerial radio connectivity to over 99%. Further, we introduce and evaluate a novel downlink inter-cell interference coordination mechanism applied to the aerial command and control traffic. Our proposed coordination mechanism is shown to provide the required aerial downlink performance at the cost of 10% capacity degradation in the serving and interfering cells.

162 citations

01 Jan 2003
TL;DR: The HSDPA concept facilitates peak data rates exceeding 2 Mbps, and the cell throughput gain over previous UTRA-FDD releases has been evaluated to be in the order of 50-100% or even more, highly dependent on factors such as the radio environment and the service provision strategy of the network operator.
Abstract: This article gives an overview of the high speed downlink packet access (HSDPA) concept; a new feature which is coming to the Release 5 specifications of the 3GPP WCDMA/UTRA-FDD standard. To support an evolution towards more sophisticated network and multimedia services, the main target of HSDPA is to increase user peak data rates, quality of service, and to generally improve spectral efficiency for downlink asymmetrical and bursty packet data services. This is accomplished by introducing a fast and complex channel control mechanism based on a short and fixed packet transmission time interval (TTI), adaptive modulation and coding (AMC), and fast physical layer (L1) hybrid ARQ. To facilitate fast scheduling with a per-TTI resolution in coherence with the instantaneous air interface load, the HSDPA-related MAC functionality is moved to the Node-B. The HSDPA concept facilitates peak data rates exceeding 2 Mbps (theoretically up to and exceeding 10 Mbps), and the cell throughput gain over previous UTRA-FDD releases has been evaluated to be in the order of 50-100% or even more, highly dependent on factors such as the radio environment and the service provision strategy of the network operator.

126 citations

Proceedings Article
01 Jan 2004
TL;DR: The present paper analyzes the paradigm of providing streaming services over HSDPA and finds that the operation of the packet scheduling functionality completely determines the node B queuing streaming packets prior to their transmission through the radio interface, and therefore the scheduler plays a key role in the satisfaction of the delay jitter constraint.
Abstract: The present paper analyzes the paradigm of providing streaming services over HSDPA. The provision of QoS to streaming users imposes two major challenges on the HSDPA technology, namely, satisfying the guaranteed bit rate and delay jitter constraints. Focusing on the latter QoS requirement, the operation of the packet scheduling functionality completely determines the node B queuing streaming packets prior to their transmission through the radio interface, and therefore the scheduler plays a key role in the satisfaction of the delay jitter constraint.

82 citations

Patent
19 Nov 2004
TL;DR: In this paper, a method, system and transmitting side protocol entity for sending packet data units for unacknowledged mode services in a mobile communication network is disclosed, and a retransmission parameter is set to a desired value in order to prevent retransmissions in a handover situation.
Abstract: A method, system and transmitting side protocol entity is disclosed for sending packet data units for unacknowledged mode services in a mobile communication network. A retransmission parameter is set to a desired value in order to prevent retransmission of packet data units in a handover situation. The transmitting side acknowledged mode radio link control entity purges from the retransmission buffer based on status reports from a user equipment. The packet data units that have been acknowledged by user equipment. A status report includes the sequence number of the highest packet data unit expected by the user equipment, and therefore the status report indicates the sequence number of the radio link control packet data units that have been received at the user equipment (either correctly or incorrectly). All the remaining packet data units in the retransmission buffer are scheduled for transmission and transmitted to the new node.

75 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Book
05 Mar 2012
TL;DR: Computer Networking: A Top-Down Approach Featuring the Internet explains the engineering problems that are inherent in communicating digital information from point to point, and presents the mathematics that determine the best path, show some code that implements those algorithms, and illustrate the logic by using excellent conceptual diagrams.
Abstract: Certain data-communication protocols hog the spotlight, but all of them have a lot in common. Computer Networking: A Top-Down Approach Featuring the Internet explains the engineering problems that are inherent in communicating digital information from point to point. The top-down approach mentioned in the subtitle means that the book starts at the top of the protocol stack--at the application layer--and works its way down through the other layers, until it reaches bare wire. The authors, for the most part, shun the well-known seven-layer Open Systems Interconnection (OSI) protocol stack in favor of their own five-layer (application, transport, network, link, and physical) model. It's an effective approach that helps clear away some of the hand waving traditionally associated with the more obtuse layers in the OSI model. The approach is definitely theoretical--don't look here for instructions on configuring Windows 2000 or a Cisco router--but it's relevant to reality, and should help anyone who needs to understand networking as a programmer, system architect, or even administration guru.The treatment of the network layer, at which routing takes place, is typical of the overall style. In discussing routing, authors James Kurose and Keith Ross explain (by way of lots of clear, definition-packed text) what routing protocols need to do: find the best route to a destination. Then they present the mathematics that determine the best path, show some code that implements those algorithms, and illustrate the logic by using excellent conceptual diagrams. Real-life implementations of the algorithms--including Internet Protocol (both IPv4 and IPv6) and several popular IP routing protocols--help you to make the transition from pure theory to networking technologies. --David WallTopics covered: The theory behind data networks, with thorough discussion of the problems that are posed at each level (the application layer gets plenty of attention). For each layer, there's academic coverage of networking problems and solutions, followed by discussion of real technologies. Special sections deal with network security and transmission of digital multimedia.

1,079 citations

Proceedings ArticleDOI
25 Jun 2012
TL;DR: This paper develops the first empirically derived comprehensive power model of a commercial LTE network with less than 6% error rate and state transitions matching the specifications, and identifies that the performance bottleneck for web-based applications lies less in the network, compared to the previous study in 3G.
Abstract: With the recent advent of 4G LTE networks, there has been increasing interest to better understand the performance and power characteristics, compared with 3G/WiFi networks. In this paper, we take one of the first steps in this direction.Using a publicly deployed tool we designed for Android called 4GTest attracting more than 3000 users within 2 months and extensive local experiments, we study the network performance of LTE networks and compare with other types of mobile networks. We observe LTE generally has significantly higher downlink and uplink throughput than 3G and even WiFi, with a median value of 13Mbps and 6Mbps, respectively. We develop the first empirically derived comprehensive power model of a commercial LTE network with less than 6% error rate and state transitions matching the specifications. Using a comprehensive data set consisting of 5-month traces of 20 smartphone users, we carefully investigate the energy usage in 3G, LTE, and WiFi networks and evaluate the impact of configuring LTE-related parameters. Despite several new power saving improvements, we find that LTE is as much as 23 times less power efficient compared with WiFi, and even less power efficient than 3G, based on the user traces and the long high power tail is found to be a key contributor. In addition, we perform case studies of several popular applications on Android in LTE and identify that the performance bottleneck for web-based applications lies less in the network, compared to our previous study in 3G [24]. Instead, the device's processing power, despite the significant improvement compared to our analysis two years ago, becomes more of a bottleneck.

1,029 citations

Journal ArticleDOI
TL;DR: An overview on the key issues that arise in the design of a resource allocation algorithm for LTE networks is provided, intended for a wide range of readers as it covers the topic from basics to advanced aspects.
Abstract: Future generation cellular networks are expected to provide ubiquitous broadband access to a continuously growing number of mobile users. In this context, LTE systems represent an important milestone towards the so called 4G cellular networks. A key feature of LTE is the adoption of advanced Radio Resource Management procedures in order to increase the system performance up to the Shannon limit. Packet scheduling mechanisms, in particular, play a fundamental role, because they are responsible for choosing, with fine time and frequency resolutions, how to distribute radio resources among different stations, taking into account channel condition and QoS requirements. This goal should be accomplished by providing, at the same time, an optimal trade-off between spectral efficiency and fairness. In this context, this paper provides an overview on the key issues that arise in the design of a resource allocation algorithm for LTE networks. It is intended for a wide range of readers as it covers the topic from basics to advanced aspects. The downlink channel under frequency division duplex configuration is considered as object of our study, but most of the considerations are valid for other configurations as well. Moreover, a survey on the most recent techniques is reported, including a classification of the different approaches presented in literature. Performance comparisons of the most well-known schemes, with particular focus on QoS provisioning capabilities, are also provided for complementing the described concepts. Thus, this survey would be useful for readers interested in learning the basic concepts before going into the details of a particular scheduling strategy, as well as for researchers aiming at deepening more specific aspects.

817 citations

Journal ArticleDOI
02 Dec 2019
TL;DR: In this article, the authors give a tutorial overview of the recent advances in UAV communications to address the above issues, with an emphasis on how to integrate UAVs into the forthcoming fifth-generation (5G) and future cellular networks.
Abstract: Unmanned aerial vehicles (UAVs) have found numerous applications and are expected to bring fertile business opportunities in the next decade. Among various enabling technologies for UAVs, wireless communication is essential and has drawn significantly growing attention in recent years. Compared to the conventional terrestrial communications, UAVs’ communications face new challenges due to their high altitude above the ground and great flexibility of movement in the 3-D space. Several critical issues arise, including the line-of-sight (LoS) dominant UAV-ground channels and induced strong aerial-terrestrial network interference, the distinct communication quality-of-service (QoS) requirements for UAV control messages versus payload data, the stringent constraints imposed by the size, weight, and power (SWAP) limitations of UAVs, as well as the exploitation of the new design degree of freedom (DoF) brought by the highly controllable 3-D UAV mobility. In this article, we give a tutorial overview of the recent advances in UAV communications to address the above issues, with an emphasis on how to integrate UAVs into the forthcoming fifth-generation (5G) and future cellular networks. In particular, we partition our discussion into two promising research and application frameworks of UAV communications, namely UAV-assisted wireless communications and cellular-connected UAVs, where UAVs are integrated into the network as new aerial communication platforms and users, respectively. Furthermore, we point out promising directions for future research.

761 citations