scispace - formally typeset
Search or ask a question
Author

Jerome C. Regier

Bio: Jerome C. Regier is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Monophyly & Phylogenetic tree. The author has an hindex of 43, co-authored 73 publications receiving 6556 citations. Previous affiliations of Jerome C. Regier include University of Maryland Biotechnology Institute.


Papers
More filters
Journal ArticleDOI
25 Feb 2010-Nature
TL;DR: This work presents strongly supported results from likelihood, Bayesian and parsimony analyses of over 41 kilobases of aligned DNA sequence from 62 single-copy nuclear protein-coding genes from 75 arthropod species, providing a statistically well-supported phylogenetic framework for the largest animal phylum.
Abstract: The evolutionary interrelationship of arthropods (jointed-legged animals) has long been a matter of dispute. A new phylogeny based on an analysis of over 41,000 base pairs of DNA from 75 species, including representatives of every major arthropod lineage, should ease the way towards a consensus on the matter. The data support the idea that insects are land-living crustaceans, that crustaceans comprise a diverse assemblage of at last three distinct arthropod types, and that myriapods (millipedes and centipedes) are the closest relatives of this great 'pancrustacean' group.

872 citations

Journal Article
Zhi-Qiang Zhang, John Na Hooper, Rob W. M. Van Soest, Andrzej Pisera, Andrea L. Crowther, Seth Tyler, Stephen Schilling, William N. Eschmeyer, Jon D. Fong, David C. Blackburn, David B. Wake, Don E. Wilson, DeeAnn M. Reeder, Uwe Fritz, Mike Hodda, Roberto Guidetti, Roberto Bertolani, Georg Mayer, Ivo de Sena Oliveira, Jonathan M. Adrain, Roger N. Bamber, Adriano B. Kury, Lorenzo Prendini, Mark S. Harvey, Frédéric Beaulieu, Ashley P. G. Dowling, Hans Klompen, Gilberto J. de Moraes, David Evans Walter, Qing-Hai Fan, Vladimir Pešić, Harry Smit, Andre V. Bochkov, AA Khaustov, Anne S. Baker, Andreas Wohltmann, Tinghuan Wen, James W. Amrine, P Beron, Jianzhen Lin, Grzegorz Gabrys, Robert W. Husband, Samuel J. Bolton, M Uusitalo, Heinrich Schatz, Valerie M. Behan-Pelletier, Barry M. OConnor, Roy A. Norton, Jason A. Dunlop, David Penney, Alessandro Minelli, William A. Shear, Shane T. Ahyong, James K. Lowry, Miguel Alonso, Geoffrey A. Boxshall, Peter Castro, Sarah Gerken, Gordan S. Karaman, Joseph W. Goy, Diana S. Jones, Kenneth Meland, D. Christopher Rogers, Jrundur Svavarsson, Frans Janssens, Kenneth Christiansen, Sigfrid Ingrisch, Paul D. Brock, Judith Marshall, George W. Beccaloni, Paul Eggleton, Laurence A. Mound, S. A. Slipinski, Rab Leschen, John F. Lawrence, Ralph W. Holzenthal, John C. Morse, Karl M. Kjer, Erik J. van Nieukerken, Lauri Kaila, Ian J. Kitching, Niels P. Kristensen, David C. Lees, Joël Minet, Charles Mitter, Marko Mutanen, Jerome C. Regier, Thomas J. Simonsen, Niklas Wahlberg, Shen-Horn Yen, Reza Zahiri, David Adamski, Joaquin Baixeras, Daniel Bartsch, Bengt Å. Bengtsson, John W. Brown, Sibyl R. Bucheli, Donald R. Davis, Jurate De Prins, Willy De Prins, Marc E. Epstein, Patricia Gentili-Poole, Cees Gielis, Peter Haettenschwiler, Axel Hausmann, Jeremy D. Holloway, Axel Kallies, Ole Karsholt, Akito Y. Kawahara, Sjaak J C Koster, Mikhail V. Kozlov, J. Donald Lafontaine, Gerardo Lamas, Jean-François Landry, Sangmi Lee, Matthias Nuss, Kyu-Tek Park, Carla M. Penz, Jadranka Rota, Alexander Schintlmeister, B. Christian Schmidt, Jae-Cheon Sohn, M. Alma Solis, Gerhard M. Tarmann, Andrew D. Warren, Susan J. Weller, Roman V. Yakovlev, Vadim V. Zolotuhin, Andreas Zwick, Thomas Pape, Vladimir Blagoderov, Mikhail B. Mostovski, Christian C. Emig, Hendrik Segers, Scott Monks, Dennis J. Richardson 
01 Jan 2011-Zootaxa

554 citations

Journal ArticleDOI
23 Dec 2011-Zootaxa
TL;DR: This dissertation aims to provide a history of web exceptionalism from 1989 to 2002, a period chosen in order to explore its roots as well as specific cases up to and including the year in which descriptions of “Web 2.0” began to circulate.
Abstract: van Nieukerken, Erik J.; Kaila, Lauri; Kitching, Ian J.; Kristensen, Niels Peder; Lees, David C.; Minet, Joël; Mitter, Charles; Mutanen, Marko; Regier, Jerome C.; Simonsen, Thomas J.; Wahlberg, Niklas; Yen, Shen-Horn; Zahiri, Reza; Adamski, David; Baixeras, Joaquin; Bartsch, Daniel; Bengtsson, Bengt Å.; Brown, John W.; Bucheli, Sibyl Rae; Davis, Donald R.; de Prins, Jurate; de Prins, Willy; Epstein, Marc E.; Gentili-Poole, Patricia; Gielis, Caes; Hättenschwiler, Peter; Hausmann, Axel; Holloway, Jeremy D.; Kallies, Axel; Karsholt, Ole; Kawahara, Akito Y.; Koster, Sjaak; Kozlov, Mikhail; Lafontaine, J. Donald; Lamas, Gerardo; Landry, JeanFrançois; Lee, Sangmi; Nuss, Matthias; Park, Kyu-Tek; Penz, Carla; Rota, Jadranka; Schintlmeister, Alexander; Schmidt, B. Christian; Sohn, Jae-Cheon; Solis, M. Alma; Tarmann, Gerhard M.; Warren, Andrew D.; Weller, Susan; Yakovlev, Roman V.; Zolotuhin, Vadim V.; Zwick, Andreas

450 citations

Journal ArticleDOI
TL;DR: This postulate that the single most parsimonious gene tree and the neighbor-joining tree for all nucleotides show almost complete concordance with the morphological tree for the EF-1 alpha gene in the noctuid moth subfamily Heliothinae is tested.
Abstract: Molecular systematists need increased access to nuclear genes. Highly conserved, low copy number protein-encoding nuclear genes have attractive features for phylogenetic inference but have heretofore been applied mostly to very ancient divergences. By virtue of their synonymous substitutions, such genes should contain a wealth of information about lower-level taxonomic relationships as well, with the advantage that amino acid conservatism makes both alignment and primer definition straightforward. We tested this postulate for the elongation factor-1 alpha (EF-1 alpha) gene in the noctuid moth subfamily Heliothinae, which has probably diversified since the middle Tertiary. We sequenced 1,240 bp in 18 taxa representing heliothine groupings strongly supported by previous morphological and allozyme studies. The single most parsimonious gene tree and the neighbor-joining tree for all nucleotides show almost complete concordance with the morphological tree. Homoplasy and pairwise divergence levels are low, transition/transversion ratios are high, and phylogenetic information is spread evenly across gene regions. The EF-1 alpha gene and presumably other highly conserved genes hold much promise for phylogenetics of Tertiary age eukaryote groups.

334 citations

Journal ArticleDOI
TL;DR: A Bayesian statistical estimate of divergence times suggests a Precambrian origin for Pancrustacea (600 Myr ago or more), which precedes the first unambiguous arthropod fossils by over 60 Myr.
Abstract: Recent molecular analyses indicate that crustaceans and hexapods form a clade (Pancrustacea or Tetraconata), but relationships among its constituent lineages, including monophyly of crustaceans, ar...

316 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Journal ArticleDOI
TL;DR: Two new objective methods for the combined selection of best-fit partitioning schemes and nucleotide substitution models are described and implemented in an open-source program, PartitionFinder, which it is hoped will encourage the objective selection of partitions and thus lead to improvements in phylogenetic analyses.
Abstract: In phylogenetic analyses of molecular sequence data, partitioning involves estimating independent models of molecular evolution for different sets of sites in a sequence alignment. Choosing an appropriate partitioning scheme is an important step in most analyses because it can affect the accuracy of phylogenetic reconstruction. Despite this, partitioning schemes are often chosen without explicit statistical justification. Here, we describe two new objective methods for the combined selection of best-fit partitioning schemes and nucleotide substitution models. These methods allow millions of partitioning schemes to be compared in realistic time frames and so permit the objective selection of partitioning schemes even for large multilocus DNA data sets. We demonstrate that these methods significantly outperform previous approaches, including both the ad hoc selection of partitioning schemes (e.g., partitioning by gene or codon position) and a recently proposed hierarchical clustering method. We have implemented these methods in an open-source program, PartitionFinder. This program allows users to select partitioning schemes and substitution models using a range of information-theoretic metrics (e.g., the Bayesian information criterion, akaike information criterion [AIC], and corrected AIC). We hope that PartitionFinder will encourage the objective selection of partitioning schemes and thus lead to improvements in phylogenetic analyses. PartitionFinder is written in Python and runs under Mac OSX 10.4 and above. The program, source code, and a detailed manual are freely available from www.robertlanfear.com/partitionfinder.

4,877 citations

Journal ArticleDOI
TL;DR: The approach to utilizing available RNA-Seq and other data types in the authors' manual curation process for vertebrate, plant, and other species is summarized, and a new direction for prokaryotic genomes and protein name management is described.
Abstract: The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

4,104 citations

Journal ArticleDOI

3,734 citations