scispace - formally typeset
Search or ask a question
Author

Jerome H. Friedman

Other affiliations: University of Washington
Bio: Jerome H. Friedman is an academic researcher from Stanford University. The author has contributed to research in topics: Lasso (statistics) & Multivariate statistics. The author has an hindex of 70, co-authored 155 publications receiving 138619 citations. Previous affiliations of Jerome H. Friedman include University of Washington.


Papers
More filters
Book ChapterDOI
01 Jan 2009

6 citations

01 Jan 1979
TL;DR: A computer-graphic system that facilitates interactive viewing and manipulation of an ensemble of points that performs successive partitioning of the cloud by use of hyperplanes and explores expanding sequences of neighborhoods.
Abstract: The need to explore structure in high-dimensional clouds of data points that may concentrate near (possibly nonlinear) manifolds of lower dimension led to the current development of three new approaches. The first is a computer-graphic system (PRIM'79) that facilitates interactive viewing and manipulation of an ensemble of points. The other two are automatic procedures for separating a cloud into more manageable pieces. One of these (BIDEC) performs successive partitioning of the cloud by use of hyperplanes; the other (Cake Maker) explores expanding sequences of neighborhoods. Both procedures provide facilities for examining the resulting pieces and the relationships among them.

6 citations

Proceedings ArticleDOI
24 Aug 2008
TL;DR: This talk presents some effective algorithms based on coordinate descent for fitting large scale regularization paths for a variety of problems.
Abstract: In a statistical world faced with an explosion of data, regularization has become an important ingredient. In a wide variety of problems we have many more input features than observations, and the lasso penalty and its hybrids have become increasingly useful for both feature selection and regularization. This talk presents some effective algorithms based on coordinate descent for fitting large scale regularization paths for a variety of problems.

6 citations

Proceedings ArticleDOI
01 Dec 2006
TL;DR: A new machine learning method based on ensembles of rules that produce predictive accuracy comparable to the best methods and easy to understand because of its simple form is described.
Abstract: Machine learning has emerged as a important tool for separating signal events from associated background in high energy particle physics experiments. This paper describes a new machine learning method based on ensembles of rules. Each rule consists of a conjuction of a small number of simple statements (''cuts'') concerning the values of individual input variables. These rule ensembles produce predictive accuracy comparable to the best methods. However their principal advantage lies in interpretation. Because of its simple form, each rule is easy to understand, as is its influence on the predictive model. Similarly, the degree of relevance of each of the respective input variables can be assessed. Graphical representations are presented that can be used to ascertain the dependence of the model jointly on the variables used for prediction.

5 citations


Cited by
More filters
Journal Article
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

47,974 citations

Journal ArticleDOI
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html .

47,038 citations

Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations

Journal ArticleDOI
TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Abstract: LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

40,826 citations

Journal ArticleDOI
TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Abstract: SUMMARY We propose a new method for estimation in linear models. The 'lasso' minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.

40,785 citations