scispace - formally typeset
Search or ask a question
Author

Jerome H. Friedman

Other affiliations: University of Washington
Bio: Jerome H. Friedman is an academic researcher from Stanford University. The author has contributed to research in topics: Lasso (statistics) & Multivariate statistics. The author has an hindex of 70, co-authored 155 publications receiving 138619 citations. Previous affiliations of Jerome H. Friedman include University of Washington.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the bias and variance components of the estimation error combine to influence classification in a very different way than with squared error on the probabilities themselves, and that certain types of (very high) bias can be canceled by low variance to produce accurate classification.
Abstract: The classification problem is considered in which an output variable y assumes discrete values with respective probabilities that depend upon the simultaneous values of a set of input variables x = {x_1,....,x_n}. At issue is how error in the estimates of these probabilities affects classification error when the estimates are used in a classification rule. These effects are seen to be somewhat counter intuitive in both their strength and nature. In particular the bias and variance components of the estimation error combine to influence classification in a very different way than with squared error on the probabilities themselves. Certain types of (very high) bias can be canceled by low variance to produce accurate classification. This can dramatically mitigate the effect of the bias associated with some simple estimators like “naive” Bayes, and the bias induced by the curse-of-dimensionality on nearest-neighbor procedures. This helps explain why such simple methods are often competitive with and sometimes superior to more sophisticated ones for classification, and why “bagging/aggregating” classifiers can often improve accuracy. These results also suggest simple modifications to these procedures that can (sometimes dramatically) further improve their classification performance.

1,066 citations

Journal ArticleDOI
TL;DR: In this article, a linear combination of simple rules derived from the data is used for general regression and classification models, where each rule consists of a conjunction of a small number of simple statements concerning the values of individual input variables.
Abstract: General regression and classification models are constructed as linear combinations of simple rules derived from the data. Each rule consists of a conjunction of a small number of simple statements concerning the values of individual input variables. These rule ensembles are shown to produce predictive accuracy comparable to the best methods. However, their principal advantage lies in interpretation. Because of its simple form, each rule is easy to understand, as is its influence on individual predictions, selected subsets of predictions, or globally over the entire space of joint input variable values. Similarly, the degree of relevance of the respective input variables can be assessed globally, locally in different regions of the input space, or at individual prediction points. Techniques are presented for automatically identifying those variables that are involved in interactions with other variables, the strength and degree of those interactions, as well as the identities of the other variables with which they interact. Graphical representations are used to visualize both main and interaction effects.

874 citations

Journal ArticleDOI
TL;DR: A new projection pursuit algorithm for exploring multivariate data is presented that has both statistical and computational advantages over previous methods and the emphasis here is on the discovery of nonlinear effects such as clustering or other general nonlinear associations among the variables.
Abstract: A new projection pursuit algorithm for exploring multivariate data is presented that has both statistical and computational advantages over previous methods. A number of practical issues concerning its application are addressed. A connection to multivariate density estimation is established, and its properties are investigated through simulation studies and application to real data. The goal of exploratory projection pursuit is to use the data to find low- (one-, two-, or three-) dimensional projections that provide the most revealing views of the full-dimensional data. With these views the human gift for pattern recognition can be applied to help discover effects that may not have been anticipated in advance. Since linear effects are directly captured by the covariance structure of the variable pairs (which are straightforward to estimate) the emphasis here is on the discovery of nonlinear effects such as clustering or other general nonlinear associations among the variables. Although arbitrary ...

829 citations

Posted Content
TL;DR: An ecien t algorithm is derived for the resulting convex problem based on coordinate descent that can be used to solve the general form of the group lasso, with non-orthonormal model matrices.
Abstract: We consider the group lasso penalty for the linear model. We note that the standard algorithm for solving the problem assumes that the model matrices in each group are orthonormal. Here we consider a more general penalty that blends the lasso (L1) with the group lasso (\two-norm"). This penalty yields solutions that are sparse at both the group and individual feature levels. We derive an ecien t algorithm for the resulting convex problem based on coordinate descent. This algorithm can also be used to solve the general form of the group lasso, with non-orthonormal model matrices.

800 citations

25 Apr 2020
TL;DR: In this paper, the authors describe the important ideas in these areas in a common conceptual framework, and the emphasis is on concepts rather than mathematics, with a liberal use of color graphics.
Abstract: During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

730 citations


Cited by
More filters
Journal Article
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

47,974 citations

Journal ArticleDOI
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html .

47,038 citations

Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations

Journal ArticleDOI
TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Abstract: LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

40,826 citations

Journal ArticleDOI
TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Abstract: SUMMARY We propose a new method for estimation in linear models. The 'lasso' minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.

40,785 citations