scispace - formally typeset
Search or ask a question
Author

Jérôme Lemoine

Bio: Jérôme Lemoine is an academic researcher from University of Auvergne. The author has contributed to research in topics: Order (ring theory) & Newton's method. The author has an hindex of 4, co-authored 9 publications receiving 32 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Two methods for the steady Navier–Stokes system of incompressible viscous fluids are analyzed and the convergence of minimizing sequences for the least-squares functional toward solutions is shown.
Abstract: We analyse two H −1 least-squares methods for the steady Navier-Stokes system of incompressible viscous fluids. Precisely, we show the convergence of minimizing sequences for the least-squares functional toward solutions. Numerical experiments support our analysis.

13 citations

Journal ArticleDOI
TL;DR: This work analyzes a least-squares method in order to solve implicit time schemes associated to the 2D and 3D Navier-Stokes system, introduced in 1979 by Bristeau, Glowinksi, Periaux, Perrier and Pironneau.
Abstract: This work analyzes a least-squares method in order to solve implicit time schemes associated to the 2D and 3D Navier–Stokes system, introduced in 1979 by Bristeau, Glowinksi, Periaux, Perrier and Pironneau. Implicit time schemes reduce the numerical resolution of the Navier–Stokes system to multiple resolutions of steady Navier–Stokes equations. We first construct a minimizing sequence (by a gradient type method) for the least-squares functional which converges strongly and quadratically toward a solution of a steady Navier–Stokes equation from any initial guess. The method turns out to be related to the globally convergent damped Newton approach applied to the Navier–Stokes operator. Then, we apply iteratively the analysis on the fully implicit Euler scheme and show the convergence of the method uniformly with respect to the time discretization. Numerical experiments for 2D examples support our analysis.

11 citations

Journal ArticleDOI
TL;DR: In this article, a space-time least-squares method associated with the unsteady Navier-Stokes system is introduced and analyzed, and the convergence is quadratic.
Abstract: We introduce and analyze a space-time least-squares method associated with the unsteady Navier–Stokes system. Weak solution in the two dimensional case and regular solution in the three dimensional case are considered. From any initial guess, we construct a minimizing sequence for the least-squares functional which converges strongly to a solution of the Navier–Stokes system. After a finite number of iterations related to the value of the viscosity coefficient, the convergence is quadratic. Numerical experiments within the two dimensional case support our analysis. This globally convergent least-squares approach is related to the damped Newton method.

10 citations

Journal ArticleDOI
TL;DR: A constructive proof yielding an explicit sequence converging strongly to a controlled solution for the semilinear equation, at least with order 1 + p after a finite number of iterations is designed.
Abstract: The null distributed controllability of the semilinear heat equation $\partial_t y-\Delta y + g(y)=f \,1_{\omega}$ assuming that $g\in C^1(\mathbb{R})$ satisfies the growth condition $\limsup_{\vert r\vert\to \infty} g(r)/(\vert r\vert \ln^{3/2}\vert r\vert)=0$ has been obtained by Fern\'andez-Cara and Zuazua in 2000. The proof based on a non constructive fixed point theorem makes use of precise estimates of the observability constant for a linearized heat equation. Assuming that $g^\prime$ is bounded and uniformly H\"older continuous on $\mathbb{R}$ with exponent $p\in (0,1]$, we design a constructive proof yielding an explicit sequence converging strongly to a controlled solution for the semilinear equation, at least with order $1+p$ after a finite number of iterations. The method is based on a least-squares approach and coincides with a globally convergent damped Newton methods: it guarantees the convergence whatever be the initial element of the sequence. Numerical experiments in the one dimensional setting illustrate our analysis.

7 citations

Posted Content
TL;DR: A minimizing sequence for the least-squares functional is constructed which converges strongly to a solution of the Navier-Stokes system and the convergence is quadratic.
Abstract: We introduce and analyze a space-time least-squares method associated to the unsteady Navier-Stokes system. Weak solution in the two dimensional case and regular solution in the three dimensional case are considered. From any initial guess, we construct a minimizing sequence for the least-squares functional which converges strongly to a solution of the Navier-Stokes system. After a finite number of iterates related to the value of the viscosity constant, the convergence is quadratic. Numerical experiments within the two dimensional case support our analysis. This globally convergent least-squares approach is related to the damped Newton method when used to solve the Navier-Stokes system through a variational formulation.

5 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this article, a numerical approximation of partial differential equations was used to detect harmful downloads of books on the Internet, where people have search hundreds of times for their chosen novels like this numerical approximation, but end up in harmful downloads.
Abstract: Thank you very much for reading numerical approximation of partial differential equations. Maybe you have knowledge that, people have search hundreds times for their chosen novels like this numerical approximation of partial differential equations, but end up in harmful downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some harmful virus inside their laptop.

246 citations

Journal ArticleDOI
TL;DR: This work analyzes a least-squares method in order to solve implicit time schemes associated to the 2D and 3D Navier-Stokes system, introduced in 1979 by Bristeau, Glowinksi, Periaux, Perrier and Pironneau.
Abstract: This work analyzes a least-squares method in order to solve implicit time schemes associated to the 2D and 3D Navier–Stokes system, introduced in 1979 by Bristeau, Glowinksi, Periaux, Perrier and Pironneau. Implicit time schemes reduce the numerical resolution of the Navier–Stokes system to multiple resolutions of steady Navier–Stokes equations. We first construct a minimizing sequence (by a gradient type method) for the least-squares functional which converges strongly and quadratically toward a solution of a steady Navier–Stokes equation from any initial guess. The method turns out to be related to the globally convergent damped Newton approach applied to the Navier–Stokes operator. Then, we apply iteratively the analysis on the fully implicit Euler scheme and show the convergence of the method uniformly with respect to the time discretization. Numerical experiments for 2D examples support our analysis.

11 citations

Journal ArticleDOI
TL;DR: In this article, a space-time least-squares method associated with the unsteady Navier-Stokes system is introduced and analyzed, and the convergence is quadratic.
Abstract: We introduce and analyze a space-time least-squares method associated with the unsteady Navier–Stokes system. Weak solution in the two dimensional case and regular solution in the three dimensional case are considered. From any initial guess, we construct a minimizing sequence for the least-squares functional which converges strongly to a solution of the Navier–Stokes system. After a finite number of iterations related to the value of the viscosity coefficient, the convergence is quadratic. Numerical experiments within the two dimensional case support our analysis. This globally convergent least-squares approach is related to the damped Newton method.

10 citations

Posted Content
TL;DR: In this paper, a constructive proof and algorithm for the controllability of semilinear 1D wave equations with Dirichlet boundary conditions is presented. But the proof is based on the Leray-Schauder fixed point theorem, which is not constructive.
Abstract: It has been proved by Zuazua in the nineties that the internally controlled semilinear 1D wave equation ∂tty − ∂xxy + g(y) = f 1ω, with Dirichlet boundary conditions, is exactly controllable in H 1 0 (0, 1) ∩ L 2 (0, 1) with controls f ∈ L 2 ((0, 1) × (0, T)), for any T > 0 and any nonempty open subset ω of (0, 1), assuming that g ∈ C 1 (R) does not grow faster than β|x| ln 2 |x| at infinity for some β > 0 small enough. The proof, based on the Leray-Schauder fixed point theorem, is however not constructive. In this article, we design a constructive proof and algorithm for the exact controllability of semilinear 1D wave equations. Assuming that g does not grow faster than β ln 2 |x| at infinity for some β > 0 small enough and that g is uniformly Holder continuous on R with exponent s ∈ [0, 1], we design a least-squares algorithm yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order 1 + s after a finite number of iterations.

8 citations

Journal ArticleDOI
TL;DR: A constructive proof yielding an explicit sequence converging strongly to a controlled solution for the semilinear equation, at least with order 1 + p after a finite number of iterations is designed.
Abstract: The null distributed controllability of the semilinear heat equation $\partial_t y-\Delta y + g(y)=f \,1_{\omega}$ assuming that $g\in C^1(\mathbb{R})$ satisfies the growth condition $\limsup_{\vert r\vert\to \infty} g(r)/(\vert r\vert \ln^{3/2}\vert r\vert)=0$ has been obtained by Fern\'andez-Cara and Zuazua in 2000. The proof based on a non constructive fixed point theorem makes use of precise estimates of the observability constant for a linearized heat equation. Assuming that $g^\prime$ is bounded and uniformly H\"older continuous on $\mathbb{R}$ with exponent $p\in (0,1]$, we design a constructive proof yielding an explicit sequence converging strongly to a controlled solution for the semilinear equation, at least with order $1+p$ after a finite number of iterations. The method is based on a least-squares approach and coincides with a globally convergent damped Newton methods: it guarantees the convergence whatever be the initial element of the sequence. Numerical experiments in the one dimensional setting illustrate our analysis.

7 citations