scispace - formally typeset
Search or ask a question
Author

Jerome V. Moloney

Bio: Jerome V. Moloney is an academic researcher from University of Arizona. The author has contributed to research in topics: Laser & Semiconductor laser theory. The author has an hindex of 69, co-authored 736 publications receiving 18629 citations. Previous affiliations of Jerome V. Moloney include University of Western Ontario & Utah State University.


Papers
More filters
Journal ArticleDOI
10 Apr 2009-Science
TL;DR: The experimental observation of curved plasma channels generated in air using femtosecond Airy beams, where the tightly confined main intensity feature of the axially nonsymmetric laser beam propagates along a bent trajectory, leaving a curved plasma channel behind.
Abstract: Plasma channel generation (or filamentation) using ultraintense laser pulses in dielectric media has a wide spectrum of applications, ranging from remote sensing to terahertz generation to lightning control. So far, laser filamentation has been triggered with the use of ultrafast pulses with axially symmetric spatial beam profiles, thereby generating straight filaments. We report the experimental observation of curved plasma channels generated in air using femtosecond Airy beams. In this unusual propagation regime, the tightly confined main intensity feature of the axially nonsymmetric laser beam propagates along a bent trajectory, leaving a curved plasma channel behind. Secondary channels bifurcate from the primary bent channel at several locations along the beam path. The broadband radiation emanating from different longitudinal sections of the curved filament propagates along angularly resolved trajectories.

746 citations

Journal ArticleDOI
TL;DR: The role of phase anisotropy in the laser cavity is explored close to threshold and it is predicted that it stabilizes two preferred orthogonal directions of polarization, which, however, are discriminated in their stability properties by transverse effects.
Abstract: A four-level model which takes account of the polarization of the laser field by including the spin sublevels of the conduction and valence bands of a semiconductor allows us to introduce vector rate equations which account for the polarization degree of freedom of the laser emission. Analysis of these rate equations and their extension to include transverse degrees of freedom provides important physical insight into the nature of polarization instabilities in surface-emitting semiconductor lasers. In the absence of transverse effects the model predicts a marginally stable linearly polarized state. The type of dynamical response of the polarization degrees of freedom is linked to the relative time scale of spontaneous-emission and spin-relaxation processes. With transverse effects included, we predict the existence of stable transverse spatially homogeneous intensity outputs with arbitrary direction of linear polarization in the transverse plane. The stability of the off-axis emission solutions to long-wavelength perturbations is investigated and, in addition to an Eckhaus instability associated with a global phase, we predict a polarization instability associated with a relative phase of the complex field vector. The role of phase anisotropy in the laser cavity is explored close to threshold and we predict that it stabilizes two preferred orthogonal directions of polarization, which, however, are discriminated in their stability properties by transverse effects.

565 citations

Journal ArticleDOI
TL;DR: Spatial- and time-domain versions of the unidirectional pulse propagation equation (UPPE) are derived and compared from the point of view of their practical application in simulations of nonlinear optical pulse dynamics.
Abstract: Spatial- and time-domain versions of the unidirectional pulse propagation equation (UPPE) are derived and compared from the point of view of their practical application in simulations of nonlinear optical pulse dynamics. A modification of the UPPE suitable for ultrathin optical waveguides, such as submicron silica wires, is also presented. We show in detail how various, previously published propagation equations follow from the UPPE in a unified way that clearly elucidates their underlying approximations and areas of applicability.

508 citations

Journal ArticleDOI
TL;DR: Numerical simulations of nonlinear pulse propagation in air show an initial pulse formed, absorbed by plasma generation, and subsequently replenished by power from the trailing edge, implying that the length scale for filament propagation is relatively insensitive to the peak input power beyond the threshold for filament generation.
Abstract: We present numerical simulations of nonlinear pulse propagation in air whereby an initial pulse is formed, absorbed by plasma generation, and subsequently replenished by power from the trailing edge of the pulse. This process can occur more than once for high-power input pulses and produce the illusion of long-distance propagation of one self-guided pulse.

403 citations

Journal ArticleDOI
TL;DR: In this paper, the importance of radiative and Auger carrier losses in InGaN∕GaN quantum wells was investigated in a fully microscopic many-body model and the results showed no significant dependence on details of the well alloy profile.
Abstract: Fully microscopic many-body models are used to study the importance of radiative and Auger carrier losses in InGaN∕GaN quantum wells. Auger losses are found to be negligible in contrast to recent speculations on their importance for the experimentally observed efficiency droop. Good agreement with experimentally measured threshold losses is demonstrated. The results show no significant dependence on details of the well alloy profile.

256 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
04 Oct 2006
TL;DR: In this paper, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

3,361 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations