scispace - formally typeset
Search or ask a question
Author

Jérôme Viers

Bio: Jérôme Viers is an academic researcher from University of Toulouse. The author has contributed to research in topics: Permafrost & Trace element. The author has an hindex of 32, co-authored 73 publications receiving 4578 citations. Previous affiliations of Jérôme Viers include Centre national de la recherche scientifique.


Papers
More filters
Book ChapterDOI
TL;DR: In this article, the authors reviewed the recent literature on trace elements in rivers, in particular by incorporating the results derived from recent ICP-MS measurements, and the basic questions which they want to address are the following: What are the trace element levels in river waters? What controls their abundance in rivers and fractionation in the weathering+transport system?
Abstract: In this chapter, we have tried to review the recent literature on trace elements in rivers, in particular by incorporating the results derived from recent ICP-MS measurements. We have favored a “field approach” by focusing on studies of natural hydrosystems. The basic questions which we want to address are the following: What are the trace element levels in river waters? What controls their abundance in rivers and fractionation in the weathering + transport system? Are trace elements, like major elements in rivers, essentially controlled by source-rock abundances? What do we know about the chemical speciation of trace elements in water? To what extent do colloids and interaction with solids regulate processes of trace elements in river waters? Can we relate the geochemistry of trace elements in aquatic systems to the periodic table? And finally, are we able to satisfactorily model and predict the behavior of most of the trace elements in hydrosystems?

627 citations

Journal ArticleDOI
TL;DR: A new database on the chemical composition of suspended matter in World Rivers, together with the associated elemental fluxes is presented, showing that riverine fluxes are similar to anthropogenic fluxes, which casts light on the effect of human activities on the cycles of trace elements at the Earth's surface.

572 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the effects on chemical weathering of runoff, temperature and pH in granitic environments based on a transition state theory model and found that increasing the contact time and the surface of the water-rock interactions such as physical denudation increased chemical weather.

332 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the weathering geochemistry and mineralogy in a lateritic soil cover in relation to the close hydrographical system at Goyoum (East Cameroon).

317 citations

Journal ArticleDOI
TL;DR: In this paper, the role of organic colloids on mineral weathering and transport of elements in natural waters was investigated in a small catchment (Nsimi-Zoetele, Cameroon).

316 citations


Cited by
More filters
Journal Article
TL;DR: Denman et al. as discussed by the authors presented the Couplings between changes in the climate system and biogeochemistry Coordinating Lead Authors: Kenneth L. Denman (Canada), Guy Brasseur (USA, Germany), Amnat Chidthaisong (Thailand), Philippe Ciais (France), Peter M. Cox (UK), Robert E. Austin (USA), D.B. Wofsy (USA) and Xiaoye Zhang (China).
Abstract: Couplings Between Changes in the Climate System and Biogeochemistry Coordinating Lead Authors: Kenneth L. Denman (Canada), Guy Brasseur (USA, Germany) Lead Authors: Amnat Chidthaisong (Thailand), Philippe Ciais (France), Peter M. Cox (UK), Robert E. Dickinson (USA), Didier Hauglustaine (France), Christoph Heinze (Norway, Germany), Elisabeth Holland (USA), Daniel Jacob (USA, France), Ulrike Lohmann (Switzerland), Srikanthan Ramachandran (India), Pedro Leite da Silva Dias (Brazil), Steven C. Wofsy (USA), Xiaoye Zhang (China) Contributing Authors: D. Archer (USA), V. Arora (Canada), J. Austin (USA), D. Baker (USA), J.A. Berry (USA), R. Betts (UK), G. Bonan (USA), P. Bousquet (France), J. Canadell (Australia), J. Christian (Canada), D.A. Clark (USA), M. Dameris (Germany), F. Dentener (EU), D. Easterling (USA), V. Eyring (Germany), J. Feichter (Germany), P. Friedlingstein (France, Belgium), I. Fung (USA), S. Fuzzi (Italy), S. Gong (Canada), N. Gruber (USA, Switzerland), A. Guenther (USA), K. Gurney (USA), A. Henderson-Sellers (Switzerland), J. House (UK), A. Jones (UK), C. Jones (UK), B. Karcher (Germany), M. Kawamiya (Japan), K. Lassey (New Zealand), C. Le Quere (UK, France, Canada), C. Leck (Sweden), J. Lee-Taylor (USA, UK), Y. Malhi (UK), K. Masarie (USA), G. McFiggans (UK), S. Menon (USA), J.B. Miller (USA), P. Peylin (France), A. Pitman (Australia), J. Quaas (Germany), M. Raupach (Australia), P. Rayner (France), G. Rehder (Germany), U. Riebesell (Germany), C. Rodenbeck (Germany), L. Rotstayn (Australia), N. Roulet (Canada), C. Sabine (USA), M.G. Schultz (Germany), M. Schulz (France, Germany), S.E. Schwartz (USA), W. Steffen (Australia), D. Stevenson (UK), Y. Tian (USA, China), K.E. Trenberth (USA), T. Van Noije (Netherlands), O. Wild (Japan, UK), T. Zhang (USA, China), L. Zhou (USA, China) Review Editors: Kansri Boonpragob (Thailand), Martin Heimann (Germany, Switzerland), Mario Molina (USA, Mexico) This chapter should be cited as: Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S Ramachandran, P.L. da Silva Dias, S.C. Wofsy and X. Zhang, 2007: Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

2,208 citations

Book
01 Mar 2007
TL;DR: Trace Elements of the Human Environment: Biogeochemistry of Trace Elements and Trace Elements of Group 1 (Previously Group Ia).
Abstract: Biogeochemistry of the Human Environment.- The Biosphere.- Soils.- Waters.- Air.- Plants.- Humans.- Biogeochemistry of Trace Elements.- Trace Elements of Group 1 (Previously Group Ia).- Trace Elements of Group 2 (Previously Group IIa).- Trace Elements of Group 3 (Previously Group IIIb).- Trace Elements of Group 4 (Previously Group IVb).- Trace Elements of Group 5 (Previously Group Vb).- Trace Elements of Group 6 (Previously Group VIb).- Trace Elements of Group 7 (Previously Group VIIb).- Trace Elements of Group 8 (Previously Part of Group VIII).- Trace Elements of Group 9 (Previously Part of Group VIII).- Trace Elements of Group 10 (Previously Part of Group VIII).- Trace Elements of Group 11 (Previously Group Ib).- Trace Elements of Group 12 (Previously Group IIb).- Trace Elements of Group 13 (Previously Group IIIa).- Trace Elements of Group 14 (Previously Group IVa).- Trace Elements of Group 15 (Previously Group Va).- Trace Elements of Group 16 (Previously Group VIa).- Trace Elements of Group 17 (Previously Group VIIa).

1,700 citations

Journal Article
TL;DR: This work found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb, and screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants.
Abstract: In addition to the often-cited advantages of using Arabidopsis thaliana as a model system in plant biological research (1), Arabidopsis has many additional characteristics that make it an attractive experimental organism for studying lea d (Pb) accumulation and tolerance in plants. These include its fortuitous familial relationship to many known metal hyperaccumulators (Brassicaceae), as well as similar Pbaccumulation patterns to most other plants. Using nutrient-agar plates, hydroponic culture, and Pb-contaminated soils as growth media, we found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb. In addition, we have found that Pb accumulation is not obligatorily linked with Pb tolerance, suggesti ng that different genetic factors control these two processes. We also screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants. Current characterization of these mutants indicates that their phenotypes are likely due to alteration of general metal ion uptake or translocation processes since these mutants also accumulate many other metals in shoots. We expect that further characterization of the ecotypes and mutants will shed light on the basic genetic and physiological underpinnings of plant-based Pb remediation. 7. Aromatic nitroreduction of acifluorfen in soils, rhizospheres, and pure cultures of rhizobacteria. Zablotowicz, R. M., Locke, M. A., and Hoagland, R. E. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 38-53. NAL Call #: QD1.A45-no.664 Abstract: Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under phytoremediation management. 8. Ascorbate: a biomarker of herbicide stress in wetland plants. Lytle, T. F. and Lytle, J. S. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 106-113. NAL Call #: QD1.A45-no.664 Abstract: In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. 9. Atmospheric nitrogenous compounds and ozone--is NO(x) fixation by plants a possible solution. Wellburn, A. R. New phytol. 139: 1 pp. 5-9. (May 1998). NAL Call #: 450-N42 Descriptors: ozoneair-pollution nitrogen-dioxide nitric-oxide air-quality tolerancebioremediationacclimatizationnutrient-sources nutrient-uptake plantscultivarsgenetic-variation literature-reviews 10. Atrazine degradation in pesticide-contaminated soils: phytoremediation potential. Kruger, E. L., Anhalt, J. C., Sorenson, D., Nelson, B., Chouhy, A. L., Anderson, T. A., and Coats, J. R. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 54-64. NAL Call #: QD1.A45-no. 664 Abstract: Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged atrazine in soil, with significantly less atrazine extractable from Kochia-vegetated soils than from nonvegetated soils. 11. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil. Siciliano, S. D. and Germida, J. J. Environ toxicol chem. 16: 6 pp. 1098-1104. (June 1997). NAL Call #: QH545.A1E58 Descriptors: polluted-soils bioremediationAbstract: Biological remediation of contaminated soil is an effective method of reducing risk to human and ecosystem health. Bacteria and plants might be used to enhance remediation of soil pollutants in situ. This study assessed the potential of bacteria (12 isolates), plants (16 forage grasses), and plant-bacteria associations (selected pairings) to remediate 2-chlorobenzoic acid (2CBA)-contaminated soil. Initially, grass viability was assessed in 2CBA-contaminated soil. Soil was contaminated wi th 2CBA, forage grasses were grown under growth chamber conditions for 42 or 60 d, and the 2CBA concentration in soil was determined by gas chromatography. Only five of 16 forage grasses grew in 2CBA-treated (816 mg/kg) soil. Growth of Bromus inermis had no effect on 2CBA concentration, whereas Agropyron intermedium, B. biebersteinii, A. riparum, and Elymus dauricus decreased 2CBA relative to nonplanted control soil by 32 to 42%. The 12 bacteria isolates were screened for their ability to promote the germ ination of the five grasses in 2CBA-contaminated soil. Inoculation of A. riparum with Pseudomonas aeruginos

1,049 citations

Book
24 Feb 2011
TL;DR: The Global River Database as mentioned in this paper is a collection of river data from North and Central America, South America, Europe, Africa, Asia, and Oceania with a focus on flooding and erosion.
Abstract: Foreword 1. Introduction 2. Runoff, erosion and delivery to the coastal ocean 3. Temporal variations 4. Human impacts Appendices. Global River Database: Appendix A: North and Central America Appendix B: South America Appendix C: Europe Appendix D: Africa Appendix E: Eurasia Appendix F: Asia Appendix G: Oceania References Index.

1,046 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a compilation of chemical and physical erosion rates in small catchments and show that silicate weathering rates are not governed by any single parameter but require consideration in multiple dimensions.

817 citations