scispace - formally typeset
Search or ask a question
Author

Jerrie Lynn Morrison

Bio: Jerrie Lynn Morrison is an academic researcher. The author has contributed to research in topics: Voltage-dependent calcium channel & P-type calcium channel. The author has an hindex of 2, co-authored 2 publications receiving 185 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The ability of the T-type Ca2+ channel antagonists to inhibit absence seizures and to reduce the duration and cycle frequency of spike-and-wave discharges suggests that these agents have a unique mechanism of action on pathological thalamocortical oscillatory activity distinct from current drugs used in clinical practice.
Abstract: Absence seizures are a common seizure type in children with genetic generalized epilepsy and are characterized by a temporary loss of awareness, arrest of physical activity, and accompanying spike-and-wave discharges on an electroencephalogram. They arise from abnormal, hypersynchronous neuronal firing in brain thalamocortical circuits. Currently available therapeutic agents are only partially effective and act on multiple molecular targets, including γ-aminobutyric acid (GABA) transaminase, sodium channels, and calcium (Ca(2+)) channels. We sought to develop high-affinity T-type specific Ca(2+) channel antagonists and to assess their efficacy against absence seizures in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model. Using a rational drug design strategy that used knowledge from a previous N-type Ca(2+) channel pharmacophore and a high-throughput fluorometric Ca(2+) influx assay, we identified the T-type Ca(2+) channel blockers Z941 and Z944 as candidate agents and showed in thalamic slices that they attenuated burst firing of thalamic reticular nucleus neurons in GAERS. Upon administration to GAERS animals, Z941 and Z944 potently suppressed absence seizures by 85 to 90% via a mechanism distinct from the effects of ethosuximide and valproate, two first-line clinical drugs for absence seizures. The ability of the T-type Ca(2+) channel antagonists to inhibit absence seizures and to reduce the duration and cycle frequency of spike-and-wave discharges suggests that these agents have a unique mechanism of action on pathological thalamocortical oscillatory activity distinct from current drugs used in clinical practice.

179 citations

Journal ArticleDOI
TL;DR: A novel series of compounds derived from the previously reported N-type calcium channel blocker NP118809 (1-(4-benzhydrylpiperazin-1-yl)-3,3-diphenylpropan-one) is described, which exhibited both anti-allodynic and anti-hyperalgesic activity in the spinal nerve ligation model of neuropathic pain.

42 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review describes how use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits, and describes how selectivity for different subtypes of calcium channels may be achieved in the future.
Abstract: Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.

762 citations

Journal ArticleDOI
TL;DR: An overview of recent advances on sodium, calcium, potassium and chloride channels that are emerging as especially attractive targets for the treatment of pain is given.
Abstract: The transmission and processing of pain signals relies critically on the activities of ion channels that are expressed in afferent pain fibers. This includes voltage-gated channels, as well as background (or leak) channels that collectively regulate resting membrane potential and action potential firing properties. Dysregulated ion channel expression in response to nerve injury and inflammation results in enhanced neuronal excitability that underlies chronic neuropathic and inflammatory pain. Pharmacological modulators of ion channels, particularly those that target channels on peripheral neurons, are being pursued as possible analgesics. Over the past few years, a number of different types of ion channels have been implicated in afferent pain signaling. Here we give an overview of recent advances on sodium, calcium, potassium and chloride channels that are emerging as especially attractive targets for the treatment of pain.

340 citations

Journal ArticleDOI
TL;DR: An overview of calcium channels as drug targets for nervous system disorders is provided, and potential challenges and opportunities for the development of new clinically effective calcium channel inhibitors are discussed.
Abstract: Voltage-gated calcium channels are important regulators of brain, heart and muscle functions, and their dysfunction can give rise to pathophysiological conditions ranging from cardiovascular disorders to neurological and psychiatric conditions such as epilepsy, pain and autism. In the nervous system, calcium channel blockers have been used successfully to treat absence seizures, and are emerging as potential therapeutic avenues for pathologies such as pain, Parkinson disease, addiction and anxiety. This Review provides an overview of calcium channels as drug targets for nervous system disorders, and discusses potential challenges and opportunities for the development of new clinically effective calcium channel inhibitors.

301 citations

Journal ArticleDOI
TL;DR: A broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology is provided.
Abstract: The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.

261 citations