scispace - formally typeset
Search or ask a question
Author

Jerry Zhao

Bio: Jerry Zhao is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Wireless sensor network & Key distribution in wireless sensor networks. The author has an hindex of 13, co-authored 16 publications receiving 5558 citations. Previous affiliations of Jerry Zhao include Information Sciences Institute & University of Southern California.

Papers
More filters
Journal Article
TL;DR: Govindan et al. as mentioned in this paper performed a large-scale measurement of packet delivery in dense wireless sensor networks and found that packet de-livery performance is important for energy-constrained networks.
Abstract: Understanding Packet Delivery Performance In Dense Wireless Sensor Networks ∗ Computer Science Department University of Southern California Los Angeles, CA 90089-0781 Jerry Zhao Computer Science Department University of Southern California Los Angeles, CA 90089-0781 Ramesh Govindan zhaoy@usc.edu ABSTRACT Wireless sensor networks promise fine-grain monitoring in a wide variety of environments. Many of these environ- ments (e.g., indoor environments or habitats) can be harsh for wireless communication. From a networking perspec- tive, the most basic aspect of wireless communication is the packet delivery performance: the spatio-temporal charac- teristics of packet loss, and its environmental dependence. These factors will deeply impact the performance of data acquisition from these networks. In this paper, we report on a systematic medium-scale (up to sixty nodes) measurement of packet delivery in three different environments: an indoor office building, a habitat with moderate foliage, and an open parking lot. Our findings have interesting implications for the design and evaluation of routing and medium-access protocols for sensor networks. ramesh@usc.edu spectrum under use, the particular modulation schemes un- der use, and possibly on the communicating devices them- selves. Communication quality can vary dramatically over time, and has been reputed to change with slight spatial displacements. All of these are true to a greater degree for ad-hoc (or infrastructure-less) communication than for wire- less communication to a base station. Given this, and the paucity of large-scale deployments, it is perhaps not surpris- ing that there have been no medium to large-scale measure- ments of ad-hoc wireless systems; one expects measurement studies to reveal high variability in performance, and one suspects that such studies will be non-representative. Wireless sensor networks [5, 7] are predicted on ad-hoc wireless communications. Perhaps more than other ad-hoc wireless systems, these networks can expect highly variable wireless communication. They will be deployed in harsh, inaccessible, environments which, almost by definition will exhibit significant multi-path communication. Many of the current sensor platforms use low-power radios which do not have enough frequency diversity to reject multi-path prop- agation. Finally, these networks will be fairly densely de- ployed (on the order of tens of nodes within communica- tion range). Given the potential impact of these networks, and despite the anecdotal evidence of variability in wireless communication, we argue that it is imperative that we get a quantitative understanding of wireless communication in sensor networks, however imperfect. Our paper is a first attempt at this. Using up to 60 Mica motes, we systematically evaluate the most basic aspect of wireless communication in a sensor network: packet delivery. Particularly for energy-constrained networks, packet de- livery performance is important, since that translates to net- work lifetime. Sensor networks are predicated using low- power RF transceivers in a multi-hop fashion. Multiple short hops can be more energy-efficient than one single hop over a long range link. Poor cumulative packet delivery per- formance across multiple hops may degrade performance of data transport and expend significant energy. Depending on the kind of application, it might significantly undermine application-level performance. Finally, understanding the dynamic range of packet delivery performance (and the ex- tent, and time-varying nature of this performance) is impor- tant for evaluating almost all sensor network communication protocols. We study packet delivery performance at two layers of the communication stack (Section 3). At the physical-layer and in the absence of interfering transmissions, packet de- Categories and Subject Descriptors C.2.1 [Network Architecture and Design]: Wireless communication; C.4 [Performance of Systems]: Perfor- mance attributes, Measurement techniques General Terms Measurement, Experimentation Keywords Low power radio, Packet loss, Performance measurement 1. INTRODUCTION Wireless communication has the reputation of being no- toriously unpredictable. The quality of wireless communica- tion depends on the environment, the part of the frequency ∗ This work is supported in part by NSF grant CCR-0121778 for the Center for Embedded Systems. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. SenSys’03, November 5–7, 2003, Los Angeles, California, USA. Copyright 2003 ACM 1-58113-707-9/03/0011 ... $ 5.00.

1,330 citations

Proceedings ArticleDOI
05 Nov 2003
TL;DR: This paper reports on a systematic medium-scale measurement of packet delivery in three different environments: an indoor office building, a habitat with moderate foliage, and an open parking lot, which has interesting implications for the design and evaluation of routing and medium-access protocols for sensor networks.
Abstract: Wireless sensor networks promise fine-grain monitoring in a wide variety of environments. Many of these environments (e.g., indoor environments or habitats) can be harsh for wireless communication. From a networking perspective, the most basic aspect of wireless communication is the packet delivery performance: the spatio-temporal characteristics of packet loss, and its environmental dependence. These factors will deeply impact the performance of data acquisition from these networks.In this paper, we report on a systematic medium-scale (up to sixty nodes) measurement of packet delivery in three different environments: an indoor office building, a habitat with moderate foliage, and an open parking lot. Our findings have interesting implications for the design and evaluation of routing and medium-access protocols for sensor networks.

1,326 citations

Proceedings ArticleDOI
01 Apr 2001
TL;DR: This work proposes a tiered system architecture in which data collected at numerous, inexpensive sensor nodes is filtered by local processing on its way through to larger, more capable and more expensive nodes.
Abstract: As new fabrication and integration technologies reduce the cost and size of micro-sensors and wireless interfaces, it becomes feasible to deploy densely distributed wireless networks of sensors and actuators These systems promise to revolutionize biological, earth, and environmental monitoring applications, providing data at granularities unrealizable by other means In addition to the challenges of miniaturization, new system architectures and new network algorithms must be developed to transform the vast quantity of raw sensor data into a manageable stream of high-level data To address this, we propose a tiered system architecture in which data collected at numerous, inexpensive sensor nodes is filtered by local processing on its way through to larger, more capable and more expensive nodesWe briefly describe Habitat monitoring as our motivating application and introduce initial system building blocks designed to support this application The remainder of the paper presents details of our experimental platform

970 citations

Journal Article
TL;DR: This work proposes a tiered system architecture in which data collected at numerous, inexpensive sensor nodes is filtered by local processing on its way through to larger, more capable and more expensive nodes.
Abstract: As new fabrication and integration technologies reduce the cost and size of micro-sensors and wireless interfaces, it becomes feasible to deploy densely distributed wireless networks of sensors and actuators. These systems promise to revolutionize biological, earth, and environmental monitoring applications, providing data at granularities unrealizable by other means. In addition to the challenges of miniaturization, new system architectures and new network algorithms must be developed to transform the vast quantity of raw sensor data into a manageable stream of high-level data. To address this, we propose a tiered system architecture in which data collected at numerous, inexpensive sensor nodes is filtered by local processing on its way through to larger, more capable and more expensive nodes.We briefly describe Habitat monitoring as our motivating application and introduce initial system building blocks designed to support this application. The remainder of the paper presents details of our experimental platform.

454 citations

Proceedings ArticleDOI
02 May 2005
TL;DR: This work proposes a practical and scalable technique for point-to-point routing in wireless sensornets, called Beacon Vector Routing, which assigns coordinates to nodes based on the vector of hop count distances to a small set of beacons, and then defines a distance metric on these coordinates.
Abstract: We propose a practical and scalable technique for point-to-point routing in wireless sensornets. This method, called Beacon Vector Routing (BVR), assigns coordinates to nodes based on the vector of hop count distances to a small set of beacons, and then defines a distance metric on these coordinates. BVR routes packets greedily, forwarding to the next hop that is the closest (according to this beacon vector distance metric) to the destination. We evaluate this approach through a combination of high-level simulation to investigate scaling and design tradeoffs, and a prototype implementation over real testbeds as a necessary reality check.

357 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: This survey presents a comprehensive review of the recent literature since the publication of a survey on sensor networks, and gives an overview of several new applications and then reviews the literature on various aspects of WSNs.

5,626 citations

Proceedings ArticleDOI
28 Sep 2002
TL;DR: An in-depth study of applying wireless sensor networks to real-world habitat monitoring and an instance of the architecture for monitoring seabird nesting environment and behavior is presented.
Abstract: We provide an in-depth study of applying wireless sensor networks to real-world habitat monitoring. A set of system design requirements are developed that cover the hardware design of the nodes, the design of the sensor network, and the capabilities for remote data access and management. A system architecture is proposed to address these requirements for habitat monitoring in general, and an instance of the architecture for monitoring seabird nesting environment and behavior is presented. The currently deployed network consists of 32 nodes on a small island off the coast of Maine streaming useful live data onto the web. The application-driven design exercise serves to identify important areas of further work in data sampling, communications, network retasking, and health monitoring.

4,623 citations

Proceedings ArticleDOI
03 Nov 2004
TL;DR: B-MAC's flexibility results in better packet delivery rates, throughput, latency, and energy consumption than S-MAC, and the need for flexible protocols to effectively realize energy efficient sensor network applications is illustrated.
Abstract: We propose B-MAC, a carrier sense media access protocol for wireless sensor networks that provides a flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization. To achieve low power operation, B-MAC employs an adaptive preamble sampling scheme to reduce duty cycle and minimize idle listening. B-MAC supports on-the-fly reconfiguration and provides bidirectional interfaces for system services to optimize performance, whether it be for throughput, latency, or power conservation. We build an analytical model of a class of sensor network applications. We use the model to show the effect of changing B-MAC's parameters and predict the behavior of sensor network applications. By comparing B-MAC to conventional 802.11-inspired protocols, specifically SMAC, we develop an experimental characterization of B-MAC over a wide range of network conditions. We show that B-MAC's flexibility results in better packet delivery rates, throughput, latency, and energy consumption than S-MAC. By deploying a real world monitoring application with multihop networking, we validate our protocol design and model. Our results illustrate the need for flexible protocols to effectively realize energy efficient sensor network applications.

3,631 citations

Journal ArticleDOI
09 Dec 2002
TL;DR: This work presents the Tiny AGgregation (TAG) service for aggregation in low-power, distributed, wireless environments, and discusses a variety of optimizations for improving the performance and fault tolerance of the basic solution.
Abstract: We present the Tiny AGgregation (TAG) service for aggregation in low-power, distributed, wireless environments. TAG allows users to express simple, declarative queries and have them distributed and executed efficiently in networks of low-power, wireless sensors. We discuss various generic properties of aggregates, and show how those properties affect the performance of our in network approach. We include a performance study demonstrating the advantages of our approach over traditional centralized, out-of-network methods, and discuss a variety of optimizations for improving the performance and fault tolerance of the basic solution.

3,166 citations