scispace - formally typeset
J

Jerzy Lewandowski

Researcher at University of Warsaw

Publications -  210
Citations -  14121

Jerzy Lewandowski is an academic researcher from University of Warsaw. The author has contributed to research in topics: Quantum gravity & Loop quantum gravity. The author has an hindex of 46, co-authored 201 publications receiving 13291 citations. Previous affiliations of Jerzy Lewandowski include University of Florida & Syracuse University.

Papers
More filters
Journal ArticleDOI

Background independent quantum gravity: A Status report

TL;DR: Loop quantum gravity as discussed by the authors is a background-independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry.
Journal ArticleDOI

Mathematical structure of loop quantum cosmology

TL;DR: In this article, the precise mathematical structure underlying loop quantum cosmology and the sense in which it implements the full quantization program in a symmetry reduced model has been made explicit, thereby providing a firmer mathematical and conceptual foundation to the subject.
Journal ArticleDOI

Quantum theory of geometry: I. Area operators

TL;DR: In this article, a functional calculus for quantum geometry is developed for a fully nonperturbative treatment of quantum gravity, which is used to begin a systematic construction of a quantum theory of geometry, and Regulated operators corresponding to 2-surfaces are introduced and shown to be self-adjoint on the underlying (kinematical) Hilbert space of states.
Journal ArticleDOI

Quantization of diffeomorphism invariant theories of connections with local degrees of freedom

TL;DR: In this article, a quantization of diffeomorphism invariant theories of connections is studied and the quantum diffeomorphicism constraint is solved and the space of solutions is equipped with an inner product that is shown to satisfy the physical reality conditions.
Journal ArticleDOI

Quantum Theory of Gravity I: Area Operators

TL;DR: In this article, a functional calculus is used to construct a quantum theory of geometry, where the fundamental excitations of quantum geometry are 1-dimensional, rather like polymers, and the 3-dimensional continuum geometry emerges only on coarse graining.