scispace - formally typeset
Search or ask a question
Author

Jerzy Lewandowski

Bio: Jerzy Lewandowski is an academic researcher from University of Warsaw. The author has contributed to research in topics: Quantum gravity & Loop quantum gravity. The author has an hindex of 46, co-authored 201 publications receiving 13291 citations. Previous affiliations of Jerzy Lewandowski include University of Florida & Syracuse University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new spinorial, BF-like canonical theory for the Einstein gravity was proposed. But it uses only the self-dual connection, and it is not a 2-form canonical approach to describe real, Lorentzian gravity.
Abstract: We introduce a new spinorial, BF-like canonical theory for the Einstein gravity. This is the first, to the best of our knowledge, 2-form canonical approach which describes real, Lorentzian gravity and uses only the self-dual connection. In the generic case, the classical theory is equivalent to the Einstein-Ashtekar theory plus reality conditions.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the heat kernel coherent states of Hall and Thiemann were used to construct operators corresponding to functions depending on holonomies and fluxes associated to a fixed graph.
Abstract: We present a new method for constructing operators in loop quantum gravity. The construction is an application of the general idea of "coherent state quantization", which allows one to associate a unique quantum operator to every function on a classical phase space. Using the heat kernel coherent states of Hall and Thiemann, we show how to construct operators corresponding to functions depending on holonomies and fluxes associated to a fixed graph. We construct the coherent state versions of the fundamental holonomy and flux operators, as well as the basic geometric operators of area, angle and volume. Our calculations show that the corresponding canonical operators are recovered from the coherent state operators in the limit of large spins.

9 citations

Journal ArticleDOI
TL;DR: In this article, local conditions that imply the no-hair property of black holes are completed in the form of constraints on the geometry of the 2-dimensional crossover surface of a black hole horizon.
Abstract: Local conditions that imply the no-hair property of black holes are completed. The conditions take the form of constraints on the geometry of the 2-dimensional crossover surface of black hole horizon. They imply also the axial symmetry without the rigidity theorem. This is the new result contained in this paper. The family of the solutions to our constraints is 2-dimensional and can be parametrized by the area and angular momentum. The constraints are induced by our assumption that the horizon is of the Petrov type D. Our result applies to all the bifurcated Killing horizons: inner or outer black hole horizons as well as cosmological horizons. Vacuum spacetimes with a given cosmological constant can be reconstructed from our solutions via Racz's black hole holograph.

9 citations

Journal ArticleDOI
TL;DR: In this paper, a spin-foam model is derived from the canonical model of Loop Quantum Gravity coupled to a massless scalar field, and generalized to the full theory of loop quantum cosmology by Ashtekar, Campiglia and Henderson, later developed by Henderson, Rovelli, Vidotto and Wilson-Ewing.
Abstract: A spin-foam model is derived from the canonical model of Loop Quantum Gravity coupled to a massless scalar field. We generalized to the full theory the scheme first proposed in the context of Loop Quantum Cosmology by Ashtekar, Campiglia and Henderson, later developed by Henderson, Rovelli, Vidotto and Wilson-Ewing.

9 citations

Journal ArticleDOI
TL;DR: The Petrov type D equation imposed on the 2-metric tensor and the rotation scalar of a cross-section of an isolated horizon can be used to uniquely distinguish the Kerr-anti-de Sitter spacetime in the case the topology of the crosssection is that of a sphere as mentioned in this paper.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Loop quantum gravity as discussed by the authors is a background-independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry.
Abstract: The goal of this review is to present an introduction to loop quantum gravity—a background-independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to providing a bird's eye view of the present status of the subject, the review should also serve as a vehicle to enter the field and explore it in detail. To aid non-experts, very little is assumed beyond elements of general relativity, gauge theories and quantum field theory. While the review is essentially self-contained, the emphasis is on communicating the underlying ideas and the significance of results rather than on presenting systematic derivations and detailed proofs. (These can be found in the listed references.) The subject can be approached in different ways. We have chosen one which is deeply rooted in well-established physics and also has sufficient mathematical precision to ensure that there are no hidden infinities. In order to keep the review to a reasonable size, and to avoid overwhelming non-experts, we have had to leave out several interesting topics, results and viewpoints; this is meant to be an introduction to the subject rather than an exhaustive review of it.

1,804 citations

Journal ArticleDOI
TL;DR: In this article, an improved Hamiltonian constraint operator is introduced in loop quantum cosmology for the isotropic model with a massless scalar field and the big bang is replaced by a quantum bounce.
Abstract: An improved Hamiltonian constraint operator is introduced in loop quantum cosmology. Quantum dynamics of the spatially flat, isotropic model with a massless scalar field is then studied in detail using analytical and numerical methods. The scalar field continues to serve as ''emergent time'', the big bang is again replaced by a quantum bounce, and quantum evolution remains deterministic across the deep Planck regime. However, while with the Hamiltonian constraint used so far in loop quantum cosmology the quantum bounce can occur even at low matter densities, with the new Hamiltonian constraint it occurs only at a Planck-scale density. Thus, the new quantum dynamics retains the attractive features of current evolutions in loop quantum cosmology but, at the same time, cures their main weakness.

1,171 citations

Journal ArticleDOI
TL;DR: Loop quantum cosmology (LQC) as mentioned in this paper is the result of applying principles of loop quantum gravity to cosmological settings, where quantum geometry creates a brand new repulsive force which is totally negligible at low spacetime curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction.
Abstract: Loop quantum cosmology (LQC) is the result of applying principles of loop quantum gravity (LQG) to cosmological settings. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of LQG. In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low spacetime curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction. In cosmological models, while Einstein's equations hold to an excellent degree of approximation at low curvature, they undergo major modifications in the Planck regime: for matter satisfying the usual energy conditions, any time a curvature invariant grows to the Planck scale, quantum geometry effects dilute it, thereby resolving singularities of general relativity. Quantum geometry corrections become more sophisticated as the models become richer. In particular, in anisotropic models, there are significant changes in the dynamics of shear potentials which tame their singular behavior in striking contrast to older results on anisotropies in bouncing models. Once singularities are resolved, the conceptual paradigm of cosmology changes and one has to revisit many of the standard issues—e.g. the 'horizon problem'—from a new perspective. Such conceptual issues as well as potential observational consequences of the new Planck scale physics are being explored, especially within the inflationary paradigm. These considerations have given rise to a burst of activity in LQC in recent years, with contributions from quantum gravity experts, mathematical physicists and cosmologists. The goal of this review is to provide an overview of the current state of the art in LQC for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general and cosmologists who wish to apply LQC to probe modifications in the standard paradigm of the early universe. In this review, effort has been made to streamline the material so that each of these communities can read only the sections they are most interested in, without loss of continuity.

1,162 citations