scispace - formally typeset
Search or ask a question
Author

Jerzy Lewandowski

Bio: Jerzy Lewandowski is an academic researcher from University of Warsaw. The author has contributed to research in topics: Quantum gravity & Loop quantum gravity. The author has an hindex of 46, co-authored 201 publications receiving 13291 citations. Previous affiliations of Jerzy Lewandowski include University of Florida & Syracuse University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, all axisymmetric solutions to the near-horizon geometry equation with a cosmological constant defined on a topological 2-sphere were derived and the regularity conditions preventing cone singularity at the poles were accounted for.
Abstract: All axisymmetric solutions to the near-horizon geometry equation with a cosmological constant defined on a topological 2-sphere were derived. The regularity conditions preventing cone singularity at the poles were accounted for. The one-to-one correspondence of the solutions with the extremal horizons in the Kerr--(anti--)de Sitter spacetimes was found. A solution corresponding to the triply degenerate horizon was identified and characterized. The solutions were also identified among the solutions to the Petrov type D equation.

4 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce a new space of ''vertex-smooth'' states for use in the loop approach to quantum gravity. But the commutator of quantum constraints vanishes identically for a large class of proposals.
Abstract: This work introduces a new space $\T'_*$ of `vertex-smooth' states for use in the loop approach to quantum gravity. Such states provide a natural domain for Euclidean Hamiltonian constraint operators of the type introduced by Thiemann (and using certain ideas of Rovelli and Smolin). In particular, such operators map $\T'_*$ into itself, and so are actual operators in this space. Their commutator can be computed on $\T'_*$ and compared with the classical hypersurface deformation algebra. Although the classical Poisson bracket of Hamiltonian constraints yields an inverse metric times an infinitesimal diffeomorphism generator, and despite the fact that the diffeomorphism generator has a well-defined non-trivial action on $\T'_*$, the commutator of quantum constraints vanishes identically for a large class of proposals.

4 citations

Journal ArticleDOI
TL;DR: In this paper, the Petrov type D equation was studied in the context of isolated horizons (IHs) generated by null curves that form nontrivial $U(1)$ bundles.
Abstract: We consider $3$-dimensional isolated horizons (IHs) generated by null curves that form nontrivial $U(1)$ bundles. We find a natural interplay between the IH geometry and the $U(1)$-bundle geometry. In this context we consider the Petrov type D equation introduced and studied in previous works \cite{DLP1,DLP2,LS,DKLS1}. From the $4$-dimensional spacetime point of view, solutions to that equation define isolated horizons embeddable in vacuum spacetimes (with cosmological constant) as Killing horizons to the second order such that the spacetime Weyl tensor at the horizon is of the Petrov type D. From the point of view of the $U(1)$-bundle structure, the equation couples a $U(1)$-connection, a metric tensor defined on the base manifold and the surface gravity in a very nontrivial way. We focus on the $U(1)$-bundles over $2$-dimensional manifolds diffeomorphic to $2$-sphere. We have derived all the axisymmetric solutions to the Petrov type D equation. For a fixed value of the cosmological constant they set a $3$-dimensional family as one could expect. A surprising result is, that generically our horizons are not embeddable in the known exact solutions to Einstein's equations. It means that among the exact type D spacetimes there exists a new family of spacetimes that generalize the properties of the Kerr- (anti) de Sitter black holes on one hand and the Taub-NUT spacetimes on the other hand.

3 citations

Journal ArticleDOI
TL;DR: In this paper, the IH mechanics can be formulated in a dimension-independent fashion and derive the first law of BH thermodynamics for arbitrary dimensional IH, and a definition of energy for non-rotating horizons is proposed.
Abstract: Recently a multidimensional generalization of Isolated Horizon framework has been proposed by Lewandowski and Pawlowski (gr-qc/0410146). Therein the geometric description was easily generalized to higher dimensions and the structure of the constraints induced by the Einstein equations was analyzed. In particular, the geometric version of the zeroth law of the black hole thermodynamics was proved. In this work we show how the IH mechanics can be formulated in a dimension--independent fashion and derive the first law of BH thermodynamics for arbitrary dimensional IH. We also propose a definition of energy for non--rotating horizons.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Loop quantum gravity as discussed by the authors is a background-independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry.
Abstract: The goal of this review is to present an introduction to loop quantum gravity—a background-independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to providing a bird's eye view of the present status of the subject, the review should also serve as a vehicle to enter the field and explore it in detail. To aid non-experts, very little is assumed beyond elements of general relativity, gauge theories and quantum field theory. While the review is essentially self-contained, the emphasis is on communicating the underlying ideas and the significance of results rather than on presenting systematic derivations and detailed proofs. (These can be found in the listed references.) The subject can be approached in different ways. We have chosen one which is deeply rooted in well-established physics and also has sufficient mathematical precision to ensure that there are no hidden infinities. In order to keep the review to a reasonable size, and to avoid overwhelming non-experts, we have had to leave out several interesting topics, results and viewpoints; this is meant to be an introduction to the subject rather than an exhaustive review of it.

1,804 citations

Journal ArticleDOI
TL;DR: In this article, an improved Hamiltonian constraint operator is introduced in loop quantum cosmology for the isotropic model with a massless scalar field and the big bang is replaced by a quantum bounce.
Abstract: An improved Hamiltonian constraint operator is introduced in loop quantum cosmology. Quantum dynamics of the spatially flat, isotropic model with a massless scalar field is then studied in detail using analytical and numerical methods. The scalar field continues to serve as ''emergent time'', the big bang is again replaced by a quantum bounce, and quantum evolution remains deterministic across the deep Planck regime. However, while with the Hamiltonian constraint used so far in loop quantum cosmology the quantum bounce can occur even at low matter densities, with the new Hamiltonian constraint it occurs only at a Planck-scale density. Thus, the new quantum dynamics retains the attractive features of current evolutions in loop quantum cosmology but, at the same time, cures their main weakness.

1,171 citations

Journal ArticleDOI
TL;DR: Loop quantum cosmology (LQC) as mentioned in this paper is the result of applying principles of loop quantum gravity to cosmological settings, where quantum geometry creates a brand new repulsive force which is totally negligible at low spacetime curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction.
Abstract: Loop quantum cosmology (LQC) is the result of applying principles of loop quantum gravity (LQG) to cosmological settings. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of LQG. In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low spacetime curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction. In cosmological models, while Einstein's equations hold to an excellent degree of approximation at low curvature, they undergo major modifications in the Planck regime: for matter satisfying the usual energy conditions, any time a curvature invariant grows to the Planck scale, quantum geometry effects dilute it, thereby resolving singularities of general relativity. Quantum geometry corrections become more sophisticated as the models become richer. In particular, in anisotropic models, there are significant changes in the dynamics of shear potentials which tame their singular behavior in striking contrast to older results on anisotropies in bouncing models. Once singularities are resolved, the conceptual paradigm of cosmology changes and one has to revisit many of the standard issues—e.g. the 'horizon problem'—from a new perspective. Such conceptual issues as well as potential observational consequences of the new Planck scale physics are being explored, especially within the inflationary paradigm. These considerations have given rise to a burst of activity in LQC in recent years, with contributions from quantum gravity experts, mathematical physicists and cosmologists. The goal of this review is to provide an overview of the current state of the art in LQC for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general and cosmologists who wish to apply LQC to probe modifications in the standard paradigm of the early universe. In this review, effort has been made to streamline the material so that each of these communities can read only the sections they are most interested in, without loss of continuity.

1,162 citations