scispace - formally typeset
Search or ask a question
Author

Jesper Mosolff Mathiesen

Bio: Jesper Mosolff Mathiesen is an academic researcher from University of Copenhagen. The author has contributed to research in topics: G protein-coupled receptor & Receptor. The author has an hindex of 19, co-authored 41 publications receiving 4853 citations. Previous affiliations of Jesper Mosolff Mathiesen include Lundbeck & Copenhagen University Hospital.

Papers
More filters
Journal ArticleDOI
29 Sep 2011-Nature
TL;DR: This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR and the most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain.
Abstract: G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The b2 adrenergic receptor (b2AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomericb2AR and nucleotide-free Gs heterotrimer. The principal interactions between the b2AR and Gs involve the amino- and carboxy-terminal a-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The

2,676 citations

Journal ArticleDOI
17 May 2012-Nature
TL;DR: The 2.8 Å crystal structure of the mouse µ-OR in complex with an irreversible morphinan antagonist is described, revealing high-resolution insights into opioid receptor structure that will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.
Abstract: Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled µ-opioid receptor (µ-OR) in the central nervous system. Here we describe the 2.8 A crystal structure of the mouse µ-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the µ-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.

1,235 citations

Journal ArticleDOI
23 Jan 2019-Nature
TL;DR: The results show that agonist binding at the Venus flytraps leads to a compaction of the intersubunit dimer interface, thereby bringing the cysteine-rich domains into close proximity in the metabotropic glutamate receptor subtype 5.
Abstract: Metabotropic glutamate receptors are family C G-protein-coupled receptors. They form obligate dimers and possess extracellular ligand-binding Venus flytrap domains, which are linked by cysteine-rich domains to their 7-transmembrane domains. Spectroscopic studies show that signalling is a dynamic process, in which large-scale conformational changes underlie the transmission of signals from the extracellular Venus flytraps to the G protein-coupling domains-the 7-transmembrane domains-in the membrane. Here, using a combination of X-ray crystallography, cryo-electron microscopy and signalling studies, we present a structural framework for the activation mechanism of metabotropic glutamate receptor subtype 5. Our results show that agonist binding at the Venus flytraps leads to a compaction of the intersubunit dimer interface, thereby bringing the cysteine-rich domains into close proximity. Interactions between the cysteine-rich domains and the second extracellular loops of the receptor enable the rigid-body repositioning of the 7-transmembrane domains, which come into contact with each other to initiate signalling.

198 citations

Journal ArticleDOI
TL;DR: Positive allosteric modulators for the hmGluR4 are identified from SIB‐1893 and MPEP, which enhanced the potency and efficacy of L‐2‐amino‐4‐phophonobutyrate (L‐AP4) in guanosine 5′‐O‐(3‐[ 35S]thiotriphosphate ([35S]GTPγS) binding and efficacy in cAMP studies.
Abstract: We have identified 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893) and 2-methyl-6-phenylethynyl pyridine hydrochloride (MPEP) as positive allosteric modulators for the hmGluR4. SIB-1893 and MPEP enhanced the potency and efficacy of L-2-amino-4-phophonobutyrate (L-AP4) in guanosine 5′-O-(3-[35S]thiotriphosphate ([35S]GTPγS) binding and efficacy in cAMP studies. These effects were fully blocked by the mGluR4 competitive antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG), indicating a dependency on receptor activation. Although SIB-1893 and MPEP had no effects alone in GTPγS binding, effects were observed in the cell-based cAMP assay due to media-derived activation as indicated by CPPG inhibition. Positive modulation of the mGluR4 was a receptor-specific effect since SIB-1893 and MPEP had neither effects on mGluR2-expressing cells nor on the parent BHK cell line. In [3H]L-AP4 binding, a two-fold decrease in KD but not in Bmax was observed with 100 μM SIB-1893, whereas MPEP affected neither parameter. Finally, SIB-1893 and MPEP failed to displace [3H]L-AP4 binding. Taken together, these data identify positive allosteric modulators for the hmGluR4.

183 citations

Journal ArticleDOI
TL;DR: GLP-1R is shown to be a recycling receptor with faster recycling rates mediated by GLp-1 as compared to exendin-4 and liraglutide and a prolonged cycling of ligand-activated GLP- 1Rs was observed and is suggested to be correlated with a prolonged cAMP signal.

151 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The widespread expression of mGluRs makes these receptors particularly attractive drug targets, and recent studies continue to validate the therapeutic utility of m GluR ligands in neurological and psychiatric disorders such as Alzheimer's disease, Parkinson's Disease, anxiety, depression, and schizophrenia.
Abstract: The metabotropic glutamate receptors (mGluRs) are family C G-protein-coupled receptors that participate in the modulation of synaptic transmission and neuronal excitability throughout the central nervous system. The mGluRs bind glutamate within a large extracellular domain and transmit signals through the receptor protein to intracellular signaling partners. A great deal of progress has been made in determining the mechanisms by which mGluRs are activated, proteins with which they interact, and orthosteric and allosteric ligands that can modulate receptor activity. The widespread expression of mGluRs makes these receptors particularly attractive drug targets, and recent studies continue to validate the therapeutic utility of mGluR ligands in neurological and psychiatric disorders such as Alzheimer's disease, Parkinson's disease, anxiety, depression, and schizophrenia.

1,581 citations

Journal ArticleDOI
14 Feb 2013-Nature
TL;DR: Through a systematic analysis of high-resolution GPCR structures, a conserved network of non-covalent contacts that defines the G PCR fold is uncovered and characteristic features of ligand binding and conformational changes during receptor activation are revealed.
Abstract: G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine.

1,296 citations

Journal ArticleDOI
17 May 2012-Nature
TL;DR: The 2.8 Å crystal structure of the mouse µ-OR in complex with an irreversible morphinan antagonist is described, revealing high-resolution insights into opioid receptor structure that will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.
Abstract: Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled µ-opioid receptor (µ-OR) in the central nervous system. Here we describe the 2.8 A crystal structure of the mouse µ-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the µ-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.

1,235 citations

Journal ArticleDOI
17 Feb 2016-Neuron
TL;DR: A primer on DREADDs is provided highlighting key technical and conceptual considerations and identify challenges for chemogenetics going forward.

1,145 citations