scispace - formally typeset
Search or ask a question
Author

Jesse Hoey

Bio: Jesse Hoey is an academic researcher from University of Waterloo. The author has contributed to research in topics: Affect control theory & Partially observable Markov decision process. The author has an hindex of 40, co-authored 156 publications receiving 6470 citations. Previous affiliations of Jesse Hoey include University of British Columbia & Toronto Rehabilitation Institute.


Papers
More filters
Journal ArticleDOI
01 Nov 2012
TL;DR: A comprehensive survey to examine the development and current status of various aspects of sensor-based activity recognition, making a primary distinction in this paper between data-driven and knowledge-driven approaches.
Abstract: Research on sensor-based activity recognition has, recently, made significant progress and is attracting growing attention in a number of disciplines and application domains. However, there is a lack of high-level overview on this topic that can inform related communities of the research state of the art. In this paper, we present a comprehensive survey to examine the development and current status of various aspects of sensor-based activity recognition. We first discuss the general rationale and distinctions of vision-based and sensor-based activity recognition. Then, we review the major approaches and methods associated with sensor-based activity monitoring, modeling, and recognition from which strengths and weaknesses of those approaches are highlighted. We make a primary distinction in this paper between data-driven and knowledge-driven approaches, and use this distinction to structure our survey. We also discuss some promising directions for future research.

944 citations

Proceedings Article
30 Jul 1999
TL;DR: In this paper, a value iteration algorithm for factored Markov decision processes (MDPs) with large state spaces has been proposed to allow dynamic programming to be applied without the need for complete state enumeration.
Abstract: Recently, structured methods for solving factored Markov decisions processes (MDPs) with large state spaces have been proposed recently to allow dynamic programming to be applied without the need for complete state enumeration. We propose and examine a new value iteration algorithm for MDPs that uses algebraic decision diagrams (ADDs) to represent value functions and policies, assuming an ADD input representation of the MDP. Dynamic programming is implemented via ADD manipulation. We demonstrate our method on a class of large MDPs (up to 63 million states) and show that significant gains can be had when compared to tree-structured representations (with up to a thirty-fold reduction in the number of nodes required to represent optimal value functions).

416 citations

Posted Content
TL;DR: This work proposes and examines a new value iteration algorithm for MDPs that uses algebraic decision diagrams (ADDs) to represent value functions and policies, assuming an ADD input representation of the MDP.
Abstract: Markov decisions processes (MDPs) are becoming increasing popular as models of decision theoretic planning. While traditional dynamic programming methods perform well for problems with small state spaces, structured methods are needed for large problems. We propose and examine a value iteration algorithm for MDPs that uses algebraic decision diagrams(ADDs) to represent value functions and policies. An MDP is represented using Bayesian networks and ADDs and dynamic programming is applied directly to these ADDs. We demonstrate our method on large MDPs (up to 63 million states) and show that significant gains can be had when compared to tree-structured representations (with up to a thirty-fold reduction in the number of nodes required to represent optimal value functions).

416 citations

Journal ArticleDOI
TL;DR: The COACH system shows promise as a tool to help support older adults with moderate-levels of dementia and their caregivers, and the findings reinforce the need for flexibility and dynamic personalization in devices designed to assist elderly adults with dementia.
Abstract: Background Many older adults with dementia require constant assistance from a caregiver when completing activities of daily living (ADL). This study examines the efficacy of a computerized device intended to assist people with dementia through ADL, while reducing caregiver burden. The device, called COACH, uses artificial intelligence to autonomously guide an older adult with dementia through the ADL using audio and/or audio-video prompts.

317 citations

Proceedings ArticleDOI
25 Jun 2006
TL;DR: This work proposes a new algorithm, called BEETLE, for effective online learning that is computationally efficient while minimizing the amount of exploration, and takes a Bayesian model-based approach, framing RL as a partially observable Markov decision process.
Abstract: Reinforcement learning (RL) was originally proposed as a framework to allow agents to learn in an online fashion as they interact with their environment. Existing RL algorithms come short of achieving this goal because the amount of exploration required is often too costly and/or too time consuming for online learning. As a result, RL is mostly used for offline learning in simulated environments. We propose a new algorithm, called BEETLE, for effective online learning that is computationally efficient while minimizing the amount of exploration. We take a Bayesian model-based approach, framing RL as a partially observable Markov decision process. Our two main contributions are the analytical derivation that the optimal value function is the upper envelope of a set of multivariate polynomials, and an efficient point-based value iteration algorithm that exploits this simple parameterization.

297 citations


Cited by
More filters
01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: Clustering algorithms for data sets appearing in statistics, computer science, and machine learning are surveyed, and their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts are illustrated.
Abstract: Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.

5,744 citations

Journal Article
TL;DR: Prospect Theory led cognitive psychology in a new direction that began to uncover other human biases in thinking that are probably not learned but are part of the authors' brain’s wiring.
Abstract: In 1974 an article appeared in Science magazine with the dry-sounding title “Judgment Under Uncertainty: Heuristics and Biases” by a pair of psychologists who were not well known outside their discipline of decision theory. In it Amos Tversky and Daniel Kahneman introduced the world to Prospect Theory, which mapped out how humans actually behave when faced with decisions about gains and losses, in contrast to how economists assumed that people behave. Prospect Theory turned Economics on its head by demonstrating through a series of ingenious experiments that people are much more concerned with losses than they are with gains, and that framing a choice from one perspective or the other will result in decisions that are exactly the opposite of each other, even if the outcomes are monetarily the same. Prospect Theory led cognitive psychology in a new direction that began to uncover other human biases in thinking that are probably not learned but are part of our brain’s wiring.

4,351 citations

Journal ArticleDOI

3,628 citations

Book
01 Jan 2001
TL;DR: This chapter discusses Decision-Theoretic Foundations, Game Theory, Rationality, and Intelligence, and the Decision-Analytic Approach to Games, which aims to clarify the role of rationality in decision-making.
Abstract: Preface 1. Decision-Theoretic Foundations 1.1 Game Theory, Rationality, and Intelligence 1.2 Basic Concepts of Decision Theory 1.3 Axioms 1.4 The Expected-Utility Maximization Theorem 1.5 Equivalent Representations 1.6 Bayesian Conditional-Probability Systems 1.7 Limitations of the Bayesian Model 1.8 Domination 1.9 Proofs of the Domination Theorems Exercises 2. Basic Models 2.1 Games in Extensive Form 2.2 Strategic Form and the Normal Representation 2.3 Equivalence of Strategic-Form Games 2.4 Reduced Normal Representations 2.5 Elimination of Dominated Strategies 2.6 Multiagent Representations 2.7 Common Knowledge 2.8 Bayesian Games 2.9 Modeling Games with Incomplete Information Exercises 3. Equilibria of Strategic-Form Games 3.1 Domination and Ratonalizability 3.2 Nash Equilibrium 3.3 Computing Nash Equilibria 3.4 Significance of Nash Equilibria 3.5 The Focal-Point Effect 3.6 The Decision-Analytic Approach to Games 3.7 Evolution. Resistance. and Risk Dominance 3.8 Two-Person Zero-Sum Games 3.9 Bayesian Equilibria 3.10 Purification of Randomized Strategies in Equilibria 3.11 Auctions 3.12 Proof of Existence of Equilibrium 3.13 Infinite Strategy Sets Exercises 4. Sequential Equilibria of Extensive-Form Games 4.1 Mixed Strategies and Behavioral Strategies 4.2 Equilibria in Behavioral Strategies 4.3 Sequential Rationality at Information States with Positive Probability 4.4 Consistent Beliefs and Sequential Rationality at All Information States 4.5 Computing Sequential Equilibria 4.6 Subgame-Perfect Equilibria 4.7 Games with Perfect Information 4.8 Adding Chance Events with Small Probability 4.9 Forward Induction 4.10 Voting and Binary Agendas 4.11 Technical Proofs Exercises 5. Refinements of Equilibrium in Strategic Form 5.1 Introduction 5.2 Perfect Equilibria 5.3 Existence of Perfect and Sequential Equilibria 5.4 Proper Equilibria 5.5 Persistent Equilibria 5.6 Stable Sets 01 Equilibria 5.7 Generic Properties 5.8 Conclusions Exercises 6. Games with Communication 6.1 Contracts and Correlated Strategies 6.2 Correlated Equilibria 6.3 Bayesian Games with Communication 6.4 Bayesian Collective-Choice Problems and Bayesian Bargaining Problems 6.5 Trading Problems with Linear Utility 6.6 General Participation Constraints for Bayesian Games with Contracts 6.7 Sender-Receiver Games 6.8 Acceptable and Predominant Correlated Equilibria 6.9 Communication in Extensive-Form and Multistage Games Exercises Bibliographic Note 7. Repeated Games 7.1 The Repeated Prisoners Dilemma 7.2 A General Model of Repeated Garnet 7.3 Stationary Equilibria of Repeated Games with Complete State Information and Discounting 7.4 Repeated Games with Standard Information: Examples 7.5 General Feasibility Theorems for Standard Repeated Games 7.6 Finitely Repeated Games and the Role of Initial Doubt 7.7 Imperfect Observability of Moves 7.8 Repeated Wines in Large Decentralized Groups 7.9 Repeated Games with Incomplete Information 7.10 Continuous Time 7.11 Evolutionary Simulation of Repeated Games Exercises 8. Bargaining and Cooperation in Two-Person Games 8.1 Noncooperative Foundations of Cooperative Game Theory 8.2 Two-Person Bargaining Problems and the Nash Bargaining Solution 8.3 Interpersonal Comparisons of Weighted Utility 8.4 Transferable Utility 8.5 Rational Threats 8.6 Other Bargaining Solutions 8.7 An Alternating-Offer Bargaining Game 8.8 An Alternating-Offer Game with Incomplete Information 8.9 A Discrete Alternating-Offer Game 8.10 Renegotiation Exercises 9. Coalitions in Cooperative Games 9.1 Introduction to Coalitional Analysis 9.2 Characteristic Functions with Transferable Utility 9.3 The Core 9.4 The Shapkey Value 9.5 Values with Cooperation Structures 9.6 Other Solution Concepts 9.7 Colational Games with Nontransferable Utility 9.8 Cores without Transferable Utility 9.9 Values without Transferable Utility Exercises Bibliographic Note 10. Cooperation under Uncertainty 10.1 Introduction 10.2 Concepts of Efficiency 10.3 An Example 10.4 Ex Post Inefficiency and Subsequent Oilers 10.5 Computing Incentive-Efficient Mechanisms 10.6 Inscrutability and Durability 10.7 Mechanism Selection by an Informed Principal 10.8 Neutral Bargaining Solutions 10.9 Dynamic Matching Processes with Incomplete Information Exercises Bibliography Index

3,569 citations