scispace - formally typeset
Search or ask a question
Author

Jesse J. Swen

Other affiliations: Leiden University
Bio: Jesse J. Swen is an academic researcher from Leiden University Medical Center. The author has contributed to research in topics: Medicine & Pharmacogenetics. The author has an hindex of 32, co-authored 141 publications receiving 5860 citations. Previous affiliations of Jesse J. Swen include Leiden University.


Papers
More filters
Journal ArticleDOI
TL;DR: Recommendations were developed for 53 drugs associated with genes coding for CYP2D6, CYP3A5, and HLA‐B*5701, and factor V Leiden (FVL).
Abstract: Currently, there are very few guidelines linking the results of pharmacogenetic tests to specific therapeutic recommendations. Therefore, the Royal Dutch Association for the Advancement of Pharmacy established the Pharmacogenetics Working Group with the objective of developing pharmacogenetics-based therapeutic (dose) recommendations. After systematic review of the literature, recommendations were developed for 53 drugs associated with genes coding for CYP2D6, CYP2C19, CYP2C9, thiopurine-S-methyltransferase (TPMT), dihydropyrimidine dehydrogenase (DPD), vitamin K epoxide reductase (VKORC1), uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), HLA-B44, HLA-B*5701, CYP3A5, and factor V Leiden (FVL).

877 citations

01 Jan 2013
TL;DR: Evidence from published literature is presented for CYP 2D6 and CYP2C19 genotype–directed dosing of tricyclic antidepressants.

448 citations

Journal ArticleDOI
TL;DR: In this paper, an update to the 2012 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP 2C19 Genotypes and Dosing of Tricyclic Antidepressants is presented.
Abstract: CYP2D6 and CYP2C19 polymorphisms affect the exposure, efficacy and safety of tricyclic antidepressants (TCAs), with some drugs being affected by CYP2D6 only (e.g., nortriptyline and desipramine) and others by both polymorphic enzymes (e.g., amitriptyline, clomipramine, doxepin, imipramine, and trimipramine). Evidence is presented for CYP2D6 and CYP2C19 genotype-directed dosing of TCAs. This document is an update to the 2012 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic Antidepressants.

419 citations

Journal ArticleDOI
TL;DR: Tacrolimus is the mainstay immunosuppressant drug used after solid organ and hematopoietic stem cell transplantation as discussed by the authors, however, individuals who express CYP3A5 (extensive and intermediate metabolizers) generally have decreased dose-adjusted trough concentrations of tacromin as compared with those who are CYP 3A5 nonexpressers (poor metabolizers), possibly delaying achievement of target blood concentrations.
Abstract: Tacrolimus is the mainstay immunosuppressant drug used after solid organ and hematopoietic stem cell transplantation. Individuals who express CYP3A5 (extensive and intermediate metabolizers) generally have decreased dose-adjusted trough concentrations of tacrolimus as compared with those who are CYP3A5 nonexpressers (poor metabolizers), possibly delaying achievement of target blood concentrations. We summarize evidence from the published literature supporting this association and provide dosing recommendations for tacrolimus based on CYP3A5 genotype when known (updates at www.pharmgkb.org).

418 citations

Journal ArticleDOI
TL;DR: In this paper, the efficacy and safety of tricyclic antidepressants were evaluated using genotype-directed dosing of CYP2D6 and C19 polymorphic enzymes.
Abstract: Polymorphisms in CYP2D6 and CYP2C19 affect the efficacy and safety of tricyclics, with some drugs being affected by CYP2D6 only, and others by both polymorphic enzymes. Amitriptyline, clomipramine, doxepin, imipramine, and trimipramine are demethylated by CYP2C19 to pharmacologically active metabolites. These drugs and their metabolites, along with desipramine and nortriptyline, undergo hydroxylation by CYP2D6 to less active metabolites. Evidence from published literature is presented for CYP2D6 and CYP2C19 genotype-directed dosing of tricyclic antidepressants.

383 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI

1,073 citations

Journal ArticleDOI
TL;DR: This article considers the growing recognition of precision medicine by clinicians, patients, the pharmaceutical industry, and policymakers and summarizes how this rapidly accelerating field will leave a major imprint on the practice of medicine.
Abstract: This article considers the growing recognition of precision medicine by clinicians, patients, the pharmaceutical industry, and policymakers and summarizes how this rapidly accelerating field will leave a major imprint on the practice of medicine.

868 citations

Journal ArticleDOI
TL;DR: Following the new guidelines for therapeutic drug monitoring in psychiatry holds the potential to improve neuropsychopharmacotherapy, accelerate the recovery of many patients, and reduce health care costs.
Abstract: Therapeutic drug monitoring (TDM) is the quantification and interpretation of drug concentrations in blood to optimize pharmacotherapy. It considers the interindividual variability of pharmacokinetics and thus enables personalized pharmacotherapy. In psychiatry and neurology, patient populations that may particularly benefit from TDM are children and adolescents, pregnant women, elderly patients, individuals with intellectual disabilities, patients with substance abuse disorders, forensic psychiatric patients or patients with known or suspected pharmacokinetic abnormalities. Non-response at therapeutic doses, uncertain drug adherence, suboptimal tolerability, or pharmacokinetic drug-drug interactions are typical indications for TDM. However, the potential benefits of TDM to optimize pharmacotherapy can only be obtained if the method is adequately integrated in the clinical treatment process. To supply treating physicians and laboratories with valid information on TDM, the TDM task force of the Arbeitsgemeinschaft fur Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) issued their first guidelines for TDM in psychiatry in 2004. After an update in 2011, it was time for the next update. Following the new guidelines holds the potential to improve neuropsychopharmacotherapy, accelerate the recovery of many patients, and reduce health care costs.

827 citations

Journal ArticleDOI
TL;DR: In this article, an expanded literature review showed that CYP2C19 loss-of-function alleles confer increased risks for serious adverse cardiovascular (CV) events among clopidogrel-treated patients with acute coronary syndromes (ACSs) undergoing percutaneous coronary intervention (PCI).
Abstract: Cytochrome P450 (CYP)2C19 catalyzes the bioactivation of the antiplatelet prodrug clopidogrel, and CYP2C19 loss-of-function alleles impair formation of active metabolites, resulting in reduced platelet inhibition. In addition, CYP2C19 loss-of-function alleles confer increased risks for serious adverse cardiovascular (CV) events among clopidogrel-treated patients with acute coronary syndromes (ACSs) undergoing percutaneous coronary intervention (PCI). Guideline updates include emphasis on appropriate indication for CYP2C19 genotype–directed antiplatelet therapy, refined recommendations for specific CYP2C19 alleles, and additional evidence from an expanded literature review (updates at http://www.pharmgkb.org).

827 citations