scispace - formally typeset
Search or ask a question
Author

Jesse R. Conner

Bio: Jesse R. Conner is an academic researcher. The author has contributed to research in topics: Inert waste & Hazardous waste. The author has an hindex of 1, co-authored 1 publications receiving 658 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: The principles, advantages and disadvantages of immobilization, soil washing and phytoremediation techniques which are frequently listed among the best demonstrated available technologies for cleaning up heavy metal contaminated sites are presented.
Abstract: Scattered literature is harnessed to critically review the possible sources, chemistry, potential biohazards and best available remedial strategies for a number of heavy metals (lead, chromium, arsenic, zinc, cadmium, copper, mercury and nickel) commonly found in contaminated soils. The principles, advantages and disadvantages of immobilization, soil washing and phytoremediation techniques which are frequently listed among the best demonstrated available technologies for cleaning up heavy metal contaminated sites are presented. Remediation of heavy metal contaminated soils is necessary to reduce the associated risks, make the land resource available for agricultural production, enhance food security and scale down land tenure problems arising from changes in the land use pattern.

2,826 citations

Journal ArticleDOI
TL;DR: A review of the full-scale and developing technologies that are available for metal removal can be found in this paper, where the main techniques that have been used for removal of metals from contaminated soils and sediments are discussed.

1,376 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the work carried out on the chemical reaction, the source materials, and the factor affecting geopolymerization, and demonstrate that certain mix compositions and reaction conditions such as Al2O3/SiO2, alkali concentration, curing temperature with curing time, water/solid ratio and pH significantly influences the formation and properties of a geopolymers.
Abstract: Geopolymerization is a developing field of research for utilizing solid waste and by-products. It provides a mature and cost-effective solution to many problems where hazardous residue has to be treated and stored under critical environmental conditions. Geopolymer involves the silicates and aluminates of by-products to undergo process of geopolymerization. It is environmentally friendly and need moderate energy to produce. This review presents the work carried out on the chemical reaction, the source materials, and the factor affecting geopolymerization. Literature demonstrates that certain mix compositions and reaction conditions such as Al2O3/SiO2, alkali concentration, curing temperature with curing time, water/solid ratio and pH significantly influences the formation and properties of a geopolymer. It is utilized to manufacture precast structures and non-structural elements, concrete pavements, concrete products and immobilization of toxic metal bearing waste that are resistant to heat and aggressive environment. Geopolymers gain 70% of the final strength in first 3–4 h of curing.

1,078 citations

Journal ArticleDOI
TL;DR: In this paper, fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in artificially contaminated clayey sand soils.

512 citations

Journal ArticleDOI
TL;DR: It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique.

496 citations