scispace - formally typeset
Search or ask a question
Author

Jessica Baas

Bio: Jessica Baas is an academic researcher. The author has contributed to research in topics: Policy analysis & Regional planning. The author has an hindex of 1, co-authored 2 publications receiving 6 citations.


Cited by
More filters
Dissertation
01 Jan 2017
TL;DR: In this paper, the authors used GCM fills to mitigate settlement of highway embankment built on peat ground, and showed that the maximum settlements were reduced up to 84 % with the adoption of GCM fill.
Abstract: Infrastructure construction now demands the development on soft ground such as peat. Discomfort of road users such as bumpy road need to be addressed with the use of appropriate lightweight and stiff backfill materials. Alternative lightweight fills used in current highway construction is critically reviewed in this research prior to the conceptual development of a stiff lightweight mat (Geocomposite Cellular Mat, GCM). The GCM concept is somewhat similar to the EPS concept by virtue of the mat form. However, the EPS is lighter than GCM, but the GCM is much stronger, stiffer, more porous and permeable. The performance of the GCM on hemic peat ground at the test site in Parit Nipah, Johor was compared with that from conventional backfill (sand fill). The typical geotechnical properties of Parit Nipah peat were high in organic content (85.3 %), high in moisture content (> 600 %) and low in undrained shear strength (< 15 kPa). The consolidation characteristics of Parit Nipah peat was obtained from both laboratory and field tests using Terzaghi’s, and hyperbolic methods. The settlement predicted by hyperbolic method gave a better agreement with the field data. The field tests were environmentally monitored and innovative field instrumentation for the settlement monitoring was specially designed for this research. The research effectively demonstrates potential for the use of GCM to mitigate settlement of highway embankment built on peat ground. The field observation showed that the maximum settlements were reduced up to 84 % with the adoption of GCM fills. Furthermore, 70 % differential settlement was reduced with GCM fill compared with sand fill. GCM fills not only reduces excessive settlement but also reduces the differential settlement. However, they also effectively accelerate the consolidation settlement within the sub-grade through the ease of dissipation of the excess pore water pressure through the open-porous cellular structure of the GCM fills.

16 citations

Proceedings ArticleDOI
TL;DR: This paper proposes a deep-learning based approach to road surface quality monitoring, using accelerometer and GPS sensor readings, which enables several useful smart-city applications such as spatio-temporal monitoring of the city's roads, early warning of bad road conditions, as well as choosing the "smoothest" road route to a destination.
Abstract: Roads form a critical part of any region's infrastructure. Their constant monitoring and maintenance is thus essential. Traditional monitoring mechanisms are heavy-weight, and hence have insufficient coverage. In this paper, we explore the use of crowd-sourced intelligent measurements from commuters' smart-phone sensors. Specifically, we propose a deep-learning based approach to road surface quality monitoring, using accelerometer and GPS sensor readings. Through extensive data collection of over 36 hours on different kinds of roads, and subsequent evaluation based on this, we show that the approach can achieve high accuracy (98.5%) in a three-way classification of road surface quality. We also show how the classification can be extended to a finer grained 11-point scale of road quality. The model is also efficient: it can be implemented on today's smart-phones, thus making it practical. Our approach, called RoadCare, enables several useful smart-city applications such as spatio-temporal monitoring of the city's roads, early warning of bad road conditions, as well as choosing the "smoothest" road route to a destination.

15 citations

Journal ArticleDOI
TL;DR: In this article, built-in temperature distribution (BITD) is one of the critical factors affecting the stress development and performance of a concrete pavement, but evaluation of the BITD has not been conducted.
Abstract: Built-in temperature distribution (BITD) is one of the critical factors affecting the stress development and performance of a concrete pavement. However, evaluation of the BITD has not been conduct...

7 citations

Journal ArticleDOI
TL;DR: In this article, two microscale numerical models are developed using a moving-mesh approach to investigate the growth process of pitting in different iron phases and the corrosion prevention capability of polyaniline (PANi) on steels.
Abstract: Two microscale numerical models are developed in this work using a moving-mesh approach to investigate the growth process of pitting in different iron phases and the corrosion prevention capability of polyaniline (PANi) on steels. The distributions of corrosion potential and current in the electrolyte-coating-steel system are computed to evaluate the anti-corrosion ability of PANi. The arbitrary Lagrangian–Eulerian approach was used to accomplish the continuous remesh process as was needed to simulate the dynamic growing forefront of the modeled pitting domain. Experimental validation of the numerical models was conducted using the technique of scanning kelvin probe force microscopy (SKPFM). The SKPFM-scanned surface topography and Volta potential difference exhibit comparable results to and thereby prove the numerical results. The potential distribution in the electrolyte phase of the validated models shows that the corrosion pit grows faster in the epoxy-only-coated steel than that in the PANi-primer-coated steel over the simulation time; also, the corrosion pit grows faster in the ferrite phase than in the cementite phase. The simulation results indicate that the epoxy-only coating lost its anti-corrosion capability as the coating was penetrated by electrolyte, while the PANi-based coating can still protect the steel from corrosion after the electrolyte penetration. The models developed in this work can be used to study the mechanisms of pitting corrosion as well as develop more effective corrosion prevention strategies for general metallic materials.

5 citations

DissertationDOI
01 Jan 2020
TL;DR: Procedure for Asphalt Mixture Friction Evaluation for WVDOH as mentioned in this paper is described in Section 5.1.1] and Section 6.2.2].
Abstract: Procedure for Asphalt Mixture Friction Evaluation for WVDOH

5 citations