scispace - formally typeset
Search or ask a question
Author

Jessica Curtiss

Bio: Jessica Curtiss is an academic researcher from New Mexico State University. The author has contributed to research in topics: Population & Gene. The author has an hindex of 6, co-authored 7 publications receiving 82 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The effects of palladium nanocubes can be used as an apoptosis inducing agent, but only with appropriate drug delivery system, and the effects are very sensitive to how well the pristine surface of PdNC is preserved.
Abstract: Recently, it has been reported that palladium nanocubes (PdNC) are capable of generating singlet oxygen without photoexcitation simply via chemisorption of molecular oxygen on its surface. Such a trait would make PdNC a highly versatile catalyst suitable in organic synthesis and a Reactive Oxygen Species (ROS) inducing cancer treatment reagent. Here we thoroughly investigated the catalytic activity of PdNC with respect to their ability to produce singlet oxygen and to oxidize 3,3′,5,5′-tetramethylbenzidine (TMB), and analyzed the cytotoxic properties of PdNC on HeLa cells. Our findings showed no evidence of singlet oxygen production by PdNC. The nanocubes’ activity is not necessarily linked to activation of oxygen. The oxidation of substrate on PdNC can be a first step, followed by PdNC regeneration with oxygen or other oxidant. The catalytic activity of PdNC toward the oxidation of TMB is very high and shows direct two-electron oxidation when the surface of the PdNC is clean and the ratio of TMB/PdNC is ...

26 citations

Journal ArticleDOI
TL;DR: The high level of S SCP polymorphism observed within a selected set of agronomically improved lines of upland cotton suggests that the use of SSCP will greatly facilitate genomewide mapping in upland Cotton.
Abstract: The lack of genetic diversity within cultivated upland cotton (Gossypium hirsutum L.) has hindered the construction of genomewide linkage maps and their applications in genetics and breeding. The objective of this investigation was to develop candidate gene markers for fi ber quality and yield on the basis of approximately 90 genes implicated in fi ber development. Polymorphisms using sequence-tagged site (STS) and single nucleotide polymorphism (SNP) markers based on single strand conformation polymorphism (SSCP) and cleaved amplifi ed polymorphism (CAP) were evaluated among three upland and fi ve Pima cotton (G. barbadense L.) genotypes. Of the 90 primer pairs, 75 resulted in polymerase chain reaction amplifi cations, including 11 that yielded polymorphic STS markers. Of the 48 primer pairs that produced polymorphic SSCP markers, 27 yielded interspecifi c polymorphism, while 15 yielded both inter- and intraspecifi c polymorphisms. Six pairs yielded only intraspecifi c polymorphisms. A total of 18 SNPs, including four indels, were identifi ed in seven of the 15 fi ber gene fragments on the basis of direct DNA sequencing, and the average length was 350 bp, with a mean of 1.3 SNPs per fragment. The average rate of SNPs per nucleotide was 0.34%, and 0.31% and 0.41% in coding and noncoding regions, respectively. Eight of the 15 SNPs were interspecifi c and 78% were nucleotide substitutions, with the four indels contributing to interspecifi c polymorphism. Six selected SNPs were confi rmed by restriction enzyme digestion. The high level of SSCP polymorphism observed within a selected set of agronomically improved lines of upland cotton suggests that the use of SSCP will greatly facilitate genomewide mapping in upland cotton.

21 citations

Journal ArticleDOI
TL;DR: Several well characterized metabolic pathways including glycolysis/gluconeogenesis, carbon fixation in photosynthetic organisms, sesquiterpenoid biosynthesis, and the biosynthesis of and response to plant hormones were shown to be affected by differentially expressed genes in the semigametic tissues.
Abstract: Semigamy in cotton is a type of facultative apomixis controlled by an incompletely dominant autosomal gene (Se). During semigamy, the sperm and egg cells undergo cellular fusion, but the sperm and egg nucleus fail to fuse in the embryo sac, giving rise to diploid, haploid, or chimeric embryos composed of sectors of paternal and maternal origin. In this study we sought to identify differentially expressed genes related to the semigamy genotype by implementing a comparative microarray analysis of anthers and ovules between a non-semigametic Pima S-1 cotton and its doubled haploid natural isogenic mutant semigametic 57-4. Selected differentially expressed genes identified by the microarray results were then confirmed using quantitative reverse transcription PCR (qRT-PCR). The comparative analysis between isogenic 57-4 and Pima S-1 identified 284 genes in anthers and 1,864 genes in ovules as being differentially expressed in the semigametic genotype 57-4. Based on gene functions, 127 differentially expressed genes were common to both semigametic anthers and ovules, with 115 being consistently differentially expressed in both tissues. Nine of those genes were selected for qRT-PCR analysis, seven of which were confirmed. Furthermore, several well characterized metabolic pathways including glycolysis/gluconeogenesis, carbon fixation in photosynthetic organisms, sesquiterpenoid biosynthesis, and the biosynthesis of and response to plant hormones were shown to be affected by differentially expressed genes in the semigametic tissues. As the first report using microarray analysis, several important metabolic pathways affected by differentially expressed genes in the semigametic cotton genotype have been identified and described in detail. While these genes are unlikely to be the semigamy gene itself, the effects associated with expression changes in those genes do mimic phenotypic traits observed in semigametic plants. A more in-depth analysis of semigamy is necessary to understand its expression and regulation at the genetic and molecular level.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the ATG-anchored AFLP (ATG-AFLP) analysis was performed on Upland cotton and Arabidopsis cDNA, and the results showed that the increased number of total and polymorphic fragments per primer combination (2.3 vs. 4.5) was higher than the conventional AFLP within Uplands cotton.
Abstract: Amplified fragment length polymorphism (AFLP) marker system has had broad applications in biology. However, the anonymous AFLP markers are mainly amplified from non-coding regions, limiting their usefulness as a functional marker system. To take advantages of the traditional AFLP techniques, we propose substitution of a restriction enzyme that recognizes a restriction site containing ATG, called ATG-anchored AFLP (ATG-AFLP) analysis. In this study, we chose NsiI (recognizing ATGCAT) to replace EcoRI in combination with MseI to completely digest genomic DNA. One specific adaptor, one pre-selective primer and six selective amplification primers for the NsiI site were designed for ligation and PCR. Six NsiI and eight MseI primers generated a total of 1,780 ATG-AFLP fragments, of which 750 (42%) were polymorphic among four genotypes from two cultivated cotton species (Upland cotton, Gossypium hirsutum and Pima cotton, G. barbadense). The number of ATG-AFLP markers was sufficient to separate the four genotypes into two groups, consistent with their evolutionary and breeding history. Our results also showed that ATG-AFLP generated less number of total and polymorphic fragments per primer combination (2–3 vs. 4–5) than conventional AFLP within Upland cotton. Using a recombination inbred line (RIL) population, 62 polymorphic ATG-AFLP markers were mapped to 19 linkage groups with known chromosome anchored simple sequence repeat (SSR) markers. Of the nine ATG-AFLP fragments randomly chosen, three were found to be highly homologous to cotton cDNA sequences. An in-silico analysis of cotton and Arabidopsis cDNA confirmed that the ATG-anchored enzyme combination NsiI/MseI did generate more fragments than the EcoRI/MseI combination.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Progress made during the last two decades in producing transgenic lines of different C3 crops with enhanced photosynthetic performance is discussed, which was reached by either the overexpression of C3 enzymes or transcription factors or the incorporation of genes encoding C4 enzymes into C3 plants.
Abstract: Stressful environments such as salinity, drought, and high temperature (heat) cause alterations in a wide range of physiological, biochemical, and molecular processes in plants. Photosynthesis, the most fundamental and intricate physiological process in all green plants, is also severely affected in all its phases by such stresses. Since the mechanism of photosynthesis involves various components, including photosynthetic pigments and photosystems, the electron transport system, and CO2 reduction pathways, any damage at any level caused by a stress may reduce the overall photosynthetic capacity of a green plant. Details of the stress-induced damage and adverse effects on different types of pigments, photosystems, components of electron transport system, alterations in the activities of enzymes involved in the mechanism of photosynthesis, and changes in various gas exchange characteristics, particularly of agricultural plants, are considered in this review. In addition, we discussed also progress made during the last two decades in producing transgenic lines of different C3 crops with enhanced photosynthetic performance, which was reached by either the overexpression of C3 enzymes or transcription factors or the incorporation of genes encoding C4 enzymes into C3 plants. We also discussed critically a current, worldwide effort to identify signaling components, such as transcription factors and protein kinases, particularly mitogen-activated protein kinases (MAPKs) involved in stress adaptation in agricultural plants.

1,435 citations

Journal ArticleDOI
TL;DR: This study presents the first example of QTL mapping using a 4WC population in upland cotton, and will enhance the understanding of the genetic basis of yield and fiber quality traits and enable further marker-assisted selection in cultivar populations in uplands cotton.
Abstract: Four-way cross (4WC) involving four different inbred lines frequently appears in the cotton breeding programs. However, linkage analysis and quantitative trait loci (QTL) mapping with molecular markers in cotton has largely been applied to populations derived from a cross between two inbred lines, and few results of QTL dissection were conducted in a 4WC population. In this study, an attempt was made to construct a linkage map and identify QTL for yield and fiber quality traits in 4WC derived from four different inbred lines in Gossypium hirsutum L. A linkage map was constructed with 285 SSR loci and one morphological locus, covering 2113.3 cM, approximately 42% of the total recombination length of the cotton genome. A total of 31 QTL with 5.1-25.8% of the total phenotypic variance explained were detected. Twenty-four common QTL across environments showed high stability, and six QTL were environment-specific. Several genomic segments affecting multiple traits were identified. The advantage of QTL mapping using a 4WC were discussed. This study presents the first example of QTL mapping using a 4WC population in upland cotton. The results presented here will enhance the understanding of the genetic basis of yield and fiber quality traits and enable further marker-assisted selection in cultivar populations in upland cotton.

140 citations

Journal ArticleDOI
05 Nov 2013-PLOS ONE
TL;DR: It suggested that there was crosstalk of responsive genes or pathways to multiple abiotic or even biotic stresses, in cotton, and these candidate genes will be worthy of functional study under diverse stresses.
Abstract: Abiotic stress is a major environmental factor that limits cotton growth and yield, moreover, this problem has become more and more serious recently, as multiple stresses often occur simultaneously due to the global climate change and environmental pollution. In this study, we sought to identify genes involved in diverse stresses including abscisic acid (ABA), cold, drought, salinity and alkalinity by comparative microarray analysis. Our result showed that 5790, 3067, 5608, 778 and 6148 transcripts, were differentially expressed in cotton seedlings under treatment of ABA (1μM ABA), cold (4°C), drought (200mM mannitol), salinity (200mM NaCl) and alkalinity (pH=11) respectively. Among the induced or suppressed genes, 126 transcripts were shared by all of the five kinds of abiotic stresses, with 64 up-regulated and 62 down-regulated. These common members are grouped as stress signal transduction, transcription factors (TFs), stress response/defense proteins, metabolism, transport facilitation, as well as cell wall/structure, according to the function annotation. We also noticed that large proportion of significant differentially expressed genes specifically regulated in response to different stress. Nine of the common transcripts of multiple stresses were selected for further validation with quantitative real time RT-PCR (qRT-PCR). Furthermore, several well characterized TF families, for example, WRKY, MYB, NAC, AP2/ERF and zinc finger were shown to be involved in different stresses. As an original report using comparative microarray to analyze transcriptome of cotton under five abiotic stresses, valuable information about functional genes and related pathways of anti-stress, and/or stress tolerance in cotton seedlings was unveiled in our result. Besides this, some important common factors were focused for detailed identification and characterization. According to our analysis, it suggested that there was crosstalk of responsive genes or pathways to multiple abiotic or even biotic stresses, in cotton. These candidate genes will be worthy of functional study under diverse stresses.

104 citations

Journal ArticleDOI
TL;DR: This work demonstrates that molecule transition and electron rearrangement processes can directly occur only through chemisorption interaction between the adsorbed O2 and high-energy {111} facet-exposed MgO with abundant surface oxygen vacancies (SOVs), hence producing singlet oxygen and superoxide anion radicals without light irradiation.
Abstract: Seeking a simple and moderate route to generate reactive oxygen species (ROS) for antibiosis is of great interest and challenge. This work demonstrates that molecule transition and electron rearrangement processes can directly occur only through chemisorption interaction between the adsorbed O2 and high-energy {111} facet-exposed MgO with abundant surface oxygen vacancies (SOVs), hence producing singlet oxygen and superoxide anion radicals without light irradiation. These ROS were confirmed by electron paramagnetic resonance, in situ Raman, and scavenger experiments. Furthermore, heat plays a crucial role for the electron transfer process to accelerate the formation of ·O2–, which is verified by temperature kinetic experiments of nitro blue tetrazolium reduction in the dark. Therefore, the presence of oxygen vacancy can be considered as an intensification of the activation process. The designed MgO is acquired in one step via constructing a reduction atmosphere during the combustion reaction process, whic...

101 citations

Journal ArticleDOI
TL;DR: This study constructed a linkage map and conducted a quantitative trait locus (QTL) analysis of 10 agronomic and fiber quality traits in a recombinant inbred mapping population derived from a cross between TM‐1, an Upland cotton line, and NM24016, an elite G. hirsutum line with stabilized introgression from G. barbadense.
Abstract: The superior fiber properties of Gossypium barbadense L. serve as a source of novel variation for improving fiber quality in Upland cotton (G. hirsutum L.), but introgression from G. barbadense has been largely unsuccessful due to hybrid breakdown and a lack of genetic and genomic resources. In an effort to overcome these limitations, we constructed a linkage map and conducted a quantitative trait locus (QTL) analysis of 10 agronomic and fiber quality traits in a recombinant inbred mapping population derived from a cross between TM-1, an Upland cotton line, and NM24016, an elite G. hirsutum line with stabilized introgression from G. barbadense. The linkage map consisted of 429 simple-sequence repeat (SSR) and 412 genotyping-by-sequencing (GBS)-based single-nucleotide polymorphism (SNP) marker loci that covered half of the tetraploid cotton genome. Notably, the 841 marker loci were unevenly distributed among the 26 chromosomes of tetraploid cotton. The 10 traits evaluated on the TM-1 × NM24016 population in a multienvironment trial were highly heritable, and most of the fiber traits showed considerable transgressive variation. Through the QTL analysis, we identified a total of 28 QTLs associated with the 10 traits. Our study provides a novel resource that can be used by breeders and geneticists for the genetic improvement of agronomic and fiber quality traits in Upland cotton. A s the world’s foremost natural fiber crop, cotton supports a multibillion-dollar production and pro

88 citations