scispace - formally typeset
Search or ask a question
Author

Jessica Rodenburg

Other affiliations: Erasmus University Rotterdam
Bio: Jessica Rodenburg is an academic researcher from University of Amsterdam. The author has contributed to research in topics: Familial hypercholesterolemia & Pravastatin. The author has an hindex of 14, co-authored 18 publications receiving 1614 citations. Previous affiliations of Jessica Rodenburg include Erasmus University Rotterdam.

Papers
More filters
Journal ArticleDOI
21 Jul 2004-JAMA
TL;DR: Two years of pravastatin therapy induced a significant regression of carotid atherosclerosis in children with familial hypercholesterolemia, with no adverse effects on growth, sexual maturation, hormone levels, or liver or muscle tissue.
Abstract: ContextChildren with familial hypercholesterolemia have endothelial dysfunction and increased carotid intima-media thickness (IMT), which herald the premature atherosclerotic disease they develop later in life. Although intervention therapy in the causal pathway of this disorder has been available for more than a decade, the long-term efficacy and safety of cholesterol-lowering medication have not been evaluated in children.ObjectiveTo determine the 2-year efficacy and safety of pravastatin therapy in children with familial hypercholesterolemia.DesignRandomized, double-blind, placebo-controlled trial that recruited children between December 7, 1997, and October 4, 1999, and followed them up for 2 years.Setting and ParticipantsTwo hundred fourteen children with familial hypercholesterolemia, aged 8 to 18 years and recruited from an academic medical referral center in the Netherlands.InterventionAfter initiation of a fat-restricted diet and encouragement of regular physical activity, children were randomly assigned to receive treatment with pravastatin, 20 to 40 mg/d (n = 106), or a placebo tablet (n = 108).Main Outcome MeasuresThe primary efficacy outcome was the change from baseline in mean carotid IMT compared between the 2 groups over 2 years; the principal safety outcomes were growth, maturation, and hormone level measurements over 2 years as well as changes in muscle and liver enzyme levels.ResultsCompared with baseline, carotid IMT showed a trend toward regression with pravastatin (mean [SD], −0.010 [0.048] mm; P = .049), whereas a trend toward progression was observed in the placebo group (mean [SD], +0.005 [0.044] mm; P = .28). The mean (SD) change in IMT compared between the 2 groups (0.014 [0.046] mm) was significant (P = .02). Also, pravastatin significantly reduced mean low-density lipoprotein cholesterol levels compared with placebo (−24.1% vs +0.3%, respectively; P<.001). No differences were observed for growth, muscle or liver enzymes, endocrine function parameters, Tanner staging scores, onset of menses, or testicular volume between the 2 groups.ConclusionTwo years of pravastatin therapy induced a significant regression of carotid atherosclerosis in children with familial hypercholesterolemia, with no adverse effects on growth, sexual maturation, hormone levels, or liver or muscle tissue.

562 citations

Journal ArticleDOI
TL;DR: Findings on multivariate analysis showed LDL cholesterol, age, and sex to be strong and independent predictors of intima-media thickness of heterozygous children with familial hypercholesterolaemia.

307 citations

Journal ArticleDOI
TL;DR: It is shown for the first time that early initiation of statin therapy in children with familial hypercholesterolemia might be beneficial in the prevention of atherosclerosis in adolescence.
Abstract: Background— We previously demonstrated in a randomized placebo-controlled trial that 2-year pravastatin treatment induced a significant regression of carotid intima-media thickness (IMT) in 8- to 18-year-old children with familial hypercholesterolemia. Subsequently, we continued to follow up these children to explore the relation between the age of statin initiation and carotid IMT after follow-up on statin treatment. We also examined safety aspects of statin therapy during this long-term follow-up. Methods and Results— All 214 children who initially participated in the previous placebo-controlled study were eligible for the follow-up study. After completion of the placebo-controlled study, all children continued treatment with pravastatin 20 or 40 mg, depending on their age. Blood samples were taken on a regular basis for lipids and safety parameters, and a carotid IMT measurement was performed after an average treatment period of 4.5 years. Follow-up data for 186 children were available for the statisti...

249 citations

Journal ArticleDOI
TL;DR: In FH families, HDL-C levels allow accurate diagnosis of FH in childhood and increased LDL-C and lipoprotein(a) and decreased HDL- C levels in children identify FH kindreds with the highest CVD risk.
Abstract: Background— Elevated LDL cholesterol (LDL-C) levels in childhood predict cardiovascular disease (CVD) later in life. Familial hypercholesterolemia (FH) represents the paradigm of this relation. Methods and Results— The objectives of this study were to (1) establish the LDL-C level that provides the most accurate diagnosis of FH in children from families with known FH and (2) assess whether lipoprotein variation in these children is associated with premature CVD in relatives. Foremost, however, it was our objective to identify children with FH who are at high risk and in need of early intervention. A total of 1034 consecutive children from FH kindreds were investigated. First, LDL-C levels >3.50 mmol/L had a 0.98 post-test probability (95% CI, 0.96 to 0.99) of predicting the presence of an LDL receptor mutation. Second, children with FH in the highest LDL-C tertile (>6.23 mmol/L) had a 1.7-times higher incidence (95% CI, 1.24 to 2.36) of having a parent with FH suffering from premature CVD (P=0.001). In ad...

135 citations

Journal ArticleDOI
TL;DR: Compared with unaffected siblings, children with FH are characterized by elevated levels of apoB-IC and IgM MDA-LDL autoantibodies.

80 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payers, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care.
Abstract: D iabetes mellitus is a chronic illness that requires continuing medical care and ongoing patient self-management education and support to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payers, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. Specifically titled sections of the standards address children with diabetes, pregnant women, and people with prediabetes. These standards are not intended to preclude clinical judgment or more extensive evaluation and management of the patient by other specialists as needed. For more detailed information about management of diabetes, refer to references 1–3. The recommendations included are screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A large number of these interventions have been shown to be cost-effective (4). A grading system (Table 1), developed by the American Diabetes Association (ADA) andmodeled after existingmethods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E. These standards of care are revised annually by the ADA’s multidisciplinary Professional Practice Committee, incorporating new evidence. For the current revision, committee members systematically searched Medline for human studies related to each subsection and published since 1 January 2010. Recommendations (bulleted at the beginning of each subsection and also listed in the “Executive Summary: Standards of Medical Care in Diabetesd2012”) were revised based on new evidence or, in some cases, to clarify the prior recommendation or match the strength of the wording to the strength of the evidence. A table linking the changes in recommendations to new evidence can be reviewed at http:// professional.diabetes.org/CPR_Search. aspx. Subsequently, as is the case for all Position Statements, the standards of care were reviewed and approved by the ExecutiveCommittee of ADA’s Board ofDirectors, which includes health care professionals, scientists, and lay people. Feedback from the larger clinical community was valuable for the 2012 revision of the standards. Readers who wish to comment on the “Standards of Medical Care in Diabetesd2012” are invited to do so at http://professional.diabetes.org/ CPR_Search.aspx. Members of the Professional Practice Committee disclose all potential financial conflicts of interest with industry. These disclosures were discussed at the onset of the standards revisionmeeting. Members of the committee, their employer, and their disclosed conflicts of interest are listed in the “Professional PracticeCommitteeMembers” table (see pg. S109). The AmericanDiabetes Association funds development of the standards and all its position statements out of its general revenues and does not utilize industry support for these purposes.

4,266 citations

Journal ArticleDOI
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care.
Abstract: D iabetes is a chronic illness that requires continuing medical care and ongoing patient self-management education and support to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude clinical judgment or more extensive evaluation and management of the patient by other specialists as needed. For more detailed information about management of diabetes, refer to references 1–3. The recommendations included are screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was used to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E. These standards of care are revised annually by the ADA multidisciplinary Professional Practice Committee, and new evidence is incorporated. Members of the Professional Practice Committee and their disclosed conflicts of interest are listed in the Introduction. Subsequently, as with all position statements, the standards of care are reviewed and approved by the Executive Committee of ADA’s Board of Directors.

3,405 citations

Journal ArticleDOI
TL;DR: The recommendations included are screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes that have been shown to be costeffective.

2,862 citations

Journal ArticleDOI
TL;DR: I. Screening and management of chronic complications in children and adolescents with type 1 diabetes i.e., screenings for type 2 diabetes and risk of future diabetes in adults, and strategy for improving diabetes care in the hospital, are outlined.
Abstract: I. CLASSIFICATION AND DIAGNOSIS OF DIABETES, p. S12 A. Classification of diabetes B. Diagnosis of diabetes C. Categories of increased risk for diabetes (prediabetes) II. TESTING FOR DIABETES IN ASYMPTOMATIC PATIENTS, p. S13 A. Testing for type 2 diabetes and risk of future diabetes in adults B. Testing for type 2 diabetes in children C. Screening for type 1 diabetes III. DETECTION AND DIAGNOSIS OF GESTATIONAL DIABETES MELLITUS, p. S15 IV. PREVENTION/DELAY OF TYPE 2 DIABETES, p. S16 V. DIABETES CARE, p. S16 A. Initial evaluation B. Management C. Glycemic control 1. Assessment of glycemic control a. Glucose monitoring b. A1C 2. Glycemic goals in adults D. Pharmacologic and overall approaches to treatment 1. Therapy for type 1 diabetes 2. Therapy for type 2 diabetes E. Diabetes self-management education F. Medical nutrition therapy G. Physical activity H. Psychosocial assessment and care I. When treatment goals are not met J. Hypoglycemia K. Intercurrent illness L. Bariatric surgery M. Immunization VI. PREVENTION AND MANAGEMENT OF DIABETES COMPLICATIONS, p. S27 A. Cardiovascular disease 1. Hypertension/blood pressure control 2. Dyslipidemia/lipid management 3. Antiplatelet agents 4. Smoking cessation 5. Coronary heart disease screening and treatment B. Nephropathy screening and treatment C. Retinopathy screening and treatment D. Neuropathy screening and treatment E. Foot care VII. DIABETES CARE IN SPECIFIC POPULATIONS, p. S38 A. Children and adolescents 1. Type 1 diabetes Glycemic control a. Screening and management of chronic complications in children and adolescents with type 1 diabetes i. Nephropathy ii. Hypertension iii. Dyslipidemia iv. Retinopathy v. Celiac disease vi. Hypothyroidism b. Self-management c. School and day care d. Transition from pediatric to adult care 2. Type 2 diabetes 3. Monogenic diabetes syndromes B. Preconception care C. Older adults D. Cystic fibrosis–related diabetes VIII. DIABETES CARE IN SPECIFIC SETTINGS, p. S43 A. Diabetes care in the hospital 1. Glycemic targets in hospitalized patients 2. Anti-hyperglycemic agents in hospitalized patients 3. Preventing hypoglycemia 4. Diabetes care providers in the hospital 5. Self-management in the hospital 6. Diabetes self-management education in the hospital 7. Medical nutrition therapy in the hospital 8. Bedside blood glucose monitoring 9. Discharge planning IX. STRATEGIES FOR IMPROVING DIABETES CARE, p. S46

2,827 citations