scispace - formally typeset
Search or ask a question
Author

Jesus F. Salazar-Gonzalez

Bio: Jesus F. Salazar-Gonzalez is an academic researcher from University of Alabama at Birmingham. The author has contributed to research in topics: Virus & Viral evolution. The author has an hindex of 30, co-authored 49 publications receiving 11396 citations. Previous affiliations of Jesus F. Salazar-Gonzalez include Universidad Autónoma de San Luis Potosí & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
20 Mar 2003-Nature
TL;DR: The detection of autologous Nab as early as 52 days after detection of HIV-specific antibodies is reported, indicating a new mechanism contributing to HIV-1 persistence in the face of an evolving antibody repertoire.
Abstract: Neutralizing antibodies (Nab) are a principal component of an effective human immune response to many pathogens, yet their role in HIV-1 infection is unclear. To gain a better understanding of this role, we examined plasma from patients with acute HIV infection. Here we report the detection of autologous Nab as early as 52 days after detection of HIV-specific antibodies. The viral inhibitory activity of Nab resulted in complete replacement of neutralization-sensitive virus by successive populations of resistant virus. Escape virus contained mutations in the env gene that were unexpectedly sparse, did not map generally to known neutralization epitopes, and involved primarily changes in N-linked glycosylation. This pattern of escape, and the exceptional density of HIV-1 envelope glycosylation generally, led us to postulate an evolving 'glycan shield' mechanism of neutralization escape whereby selected changes in glycan packing prevent Nab binding but not receptor binding. Direct support for this model was obtained by mutational substitution showing that Nab-selected alterations in glycosylation conferred escape from both autologous antibody and epitope-specific monoclonal antibodies. The evolving glycan shield thus represents a new mechanism contributing to HIV-1 persistence in the face of an evolving antibody repertoire.

2,427 citations

Journal ArticleDOI
TL;DR: A mathematical model of random viral evolution and phylogenetic tree construction is developed and used to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection, suggesting a finite window of potential vulnerability of HIV- 1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.
Abstract: The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection. Viral env genes evolving from individual transmitted or founder viruses generally exhibited a Poisson distribution of mutations and star-like phylogeny, which coalesced to an inferred consensus sequence at or near the estimated time of virus transmission. Overall, 78 of 102 subjects had evidence of productive clinical infection by a single virus, and 24 others had evidence of productive clinical infection by a minimum of two to five viruses. Phenotypic analysis of transmitted or early founder Envs revealed a consistent pattern of CCR5 dependence, masking of coreceptor binding regions, and equivalent or modestly enhanced resistance to the fusion inhibitor T1249 and broadly neutralizing antibodies compared with Envs from chronically infected subjects. Low multiplicity infection and limited viral evolution preceding peak viremia suggest a finite window of potential vulnerability of HIV-1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.

1,880 citations

Journal ArticleDOI
TL;DR: There is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution and a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult.
Abstract: Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.

1,127 citations

Journal ArticleDOI
TL;DR: Viral properties associated with mucosal HIV-1 transmission and a limited set of rapidly evolving adaptive mutations driven primarily, but not exclusively, by early cytotoxic T cell responses are revealed.
Abstract: Identification of full-length transmitted HIV-1 genomes could be instrumental in HIV-1 pathogenesis, microbicide, and vaccine research by enabling the direct analysis of those viruses actually responsible for productive clinical infection. We show in 12 acutely infected subjects (9 clade B and 3 clade C) that complete HIV-1 genomes of transmitted/founder viruses can be inferred by single genome amplification and sequencing of plasma virion RNA. This allowed for the molecular cloning and biological analysis of transmitted/founder viruses and a comprehensive genome-wide assessment of the genetic imprint left on the evolving virus quasispecies by a composite of host selection pressures. Transmitted viruses encoded intact canonical genes ( gag-pol-vif-vpr-tat-rev-vpu-env-nef ) and replicated efficiently in primary human CD4+ T lymphocytes but much less so in monocyte-derived macrophages. Transmitted viruses were CD4 and CCR5 tropic and demonstrated concealment of coreceptor binding surfaces of the envelope bridging sheet and variable loop 3. 2 mo after infection, transmitted/founder viruses in three subjects were nearly completely replaced by viruses differing at two to five highly selected genomic loci; by 12–20 mo, viruses exhibited concentrated mutations at 17–34 discrete locations. These findings reveal viral properties associated with mucosal HIV-1 transmission and a limited set of rapidly evolving adaptive mutations driven primarily, but not exclusively, by early cytotoxic T cell responses.

777 citations

Journal ArticleDOI
TL;DR: Kinetic analysis and mathematical modeling of virus immune escape showed that the contribution of CD8 T cell–mediated killing of productively infected cells was earlier and much greater than previously recognized and that it contributed to the initial decline of plasma virus in acute infection.
Abstract: Identification of the transmitted/founder virus makes possible, for the first time, a genome-wide analysis of host immune responses against the infecting HIV-1 proteome. A complete dissection was made of the primary HIV-1–specific T cell response induced in three acutely infected patients. Cellular assays, together with new algorithms which identify sites of positive selection in the virus genome, showed that primary HIV-1–specific T cells rapidly select escape mutations concurrent with falling virus load in acute infection. Kinetic analysis and mathematical modeling of virus immune escape showed that the contribution of CD8 T cell–mediated killing of productively infected cells was earlier and much greater than previously recognized and that it contributed to the initial decline of plasma virus in acute infection. After virus escape, these first T cell responses often rapidly waned, leaving or being succeeded by T cell responses to epitopes which escaped more slowly or were invariant. These latter responses are likely to be important in maintaining the already established virus set point. In addition to mutations selected by T cells, there were other selected regions that accrued mutations more gradually but were not associated with a T cell response. These included clusters of mutations in envelope that were targeted by NAbs, a few isolated sites that reverted to the consensus sequence, and bystander mutations in linkage with T cell–driven escape.

670 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This ALVAC-HIV and AIDSVAX B/E vaccine regimen may reduce the risk of HIV infection in a community-based population with largely heterosexual risk and offer insight for future research.
Abstract: In the intention-to-treat analysis involving 16,402 subjects, there was a trend toward the prevention of HIV-1 infection among the vaccine recipients, with a vaccine efficacy of 26.4% (95% confidence interval [CI], −4.0 to 47.9; P = 0.08). In the perprotocol analysis involving 12,542 subjects, the vaccine efficacy was 26.2% (95% CI, −13.3 to 51.9; P = 0.16). In the modified intention-to-treat analysis involving 16,395 subjects (with the exclusion of 7 subjects who were found to have had HIV-1 infection at baseline), the vaccine efficacy was 31.2% (95% CI, 1.1 to 52.1; P = 0.04). Vaccination did not affect the degree of viremia or the CD4+ T-cell count in subjects in whom HIV-1 infection was subsequently diagnosed. Conclusions This ALVAC-HIV and AIDSVAX B/E vaccine regimen may reduce the risk of HIV infection in a community-based population with largely heterosexual risk. Vaccination did not affect the viral load or CD4+ count in subjects with HIV infection. Although the results show only a modest benefit, they offer insight for future research. (ClinicalTrials.gov number, NCT00223080.)

2,960 citations

Journal ArticleDOI
TL;DR: Systemic reaction characterized by fever, leukocytosis, increase in erythrocyte sedimentation rate, increases in LeucocyTosis secretion of ACTH and glucocorticoids, and by dramatic changes in the concentration of some plasma ,l' proteins.
Abstract: systemic reaction characterized by fever, leukocytosis, increase in erythrocyte sedimentation rate, increases in Leucocytosis secretion of ACTH and glucocorticoids, activation of Complement activat complement and clotting cascades, decreases in serum levels of iron and zinc, a negative nitrogen balance, and by dramatic changes in the concentration of some plasma ,l' proteins. These proteins are named acute phase proteins. i

2,680 citations

Journal ArticleDOI
15 Aug 1995-Blood
TL;DR: Data suggest that KSHV could play a role in the pathogenesis of MCD, especially in HIV-infected patients, which is a close association with Kaposi's sarcoma.

2,121 citations

Journal ArticleDOI
TL;DR: A mathematical model of random viral evolution and phylogenetic tree construction is developed and used to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection, suggesting a finite window of potential vulnerability of HIV- 1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.
Abstract: The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection. Viral env genes evolving from individual transmitted or founder viruses generally exhibited a Poisson distribution of mutations and star-like phylogeny, which coalesced to an inferred consensus sequence at or near the estimated time of virus transmission. Overall, 78 of 102 subjects had evidence of productive clinical infection by a single virus, and 24 others had evidence of productive clinical infection by a minimum of two to five viruses. Phenotypic analysis of transmitted or early founder Envs revealed a consistent pattern of CCR5 dependence, masking of coreceptor binding regions, and equivalent or modestly enhanced resistance to the fusion inhibitor T1249 and broadly neutralizing antibodies compared with Envs from chronically infected subjects. Low multiplicity infection and limited viral evolution preceding peak viremia suggest a finite window of potential vulnerability of HIV-1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.

1,880 citations