scispace - formally typeset
Search or ask a question
Author

Jia-Hu Ouyang

Bio: Jia-Hu Ouyang is an academic researcher from Harbin Institute of Technology. The author has contributed to research in topics: Microstructure & Ceramic. The author has an hindex of 39, co-authored 259 publications receiving 6199 citations. Previous affiliations of Jia-Hu Ouyang include Fraunhofer Society & National Institute of Advanced Industrial Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the temperature distribution and microstructural evolution of the friction stir welding of 6061 aluminum alloy (T6-temper condition) to copper are investigated. But the main focus of the work is on the microstructures of the weld.

372 citations

Journal ArticleDOI
01 Nov 2016-Carbon
TL;DR: In this paper, reduced graphene oxide (RGO) was decorated with well dispersed ZnO nanocrystals with narrow grain size distribution by a facile in-situ growth strategy.

222 citations

Journal ArticleDOI
TL;DR: In this article, the material flow and microstructural evolution in the friction stir welds of a 6061-Al alloy to itself and of an Al alloy to 2024-Al plates of 12.7 mm in thickness were studied under different welding conditions.
Abstract: The material flow and microstructural evolution in the friction stir welds of a 6061-Al alloy to itself and of a 6061-Al alloy to 2024-Al alloy plates of 12.7 mm in thickness were studied under different welding conditions. The results showed that plastic deformation, flow, and mechanical mixing of the material exhibit distinct asymmetry characteristics at both sides of the same and dissimilar welds. The microstructure in dissimilar 6061-Al/2024-Al welds is significantly different from that in the welds of a 6061-Al alloy to itself. Vortex-like structures featured by the concentric flow lines for a weld of 6061-Al alloy to itself, and alternative lamellae with different alloy constituents for a weld of 6061-Al to 2024-Al alloy, are attributed to the stirring action of the threaded tool, in situ extrusion, and traverse motion along the welding direction. The mutual mixing in the dissimilar metal welds is intimate and far from complete. However, the bonding between the two Al-alloys is clearly complete. Three different regions in the nugget zone of dissimilar 6061-Al/2024-Al welds are classified by the mechanically mixed region (MMR) characterized by the relatively dispersed particles of different alloy constituents, the stirring-induced plastic flow region (SPFR) consisting of alternative vortex-like lamellae of the two Al-alloys, and the unmixed region (UMR) consisting of fine equiaxed grains of the 6061-Al alloy. Within all of these three regions, the material is able to withstand a very high degree of plastic deformation due to the presence of dynamic recovery or recrystallization of the microstructure. The degree of material mixing, the thickness of the deformed Al-alloy lamellae, and the material flow patterns depend on the related positions in the nugget zone and the processing parameters. Distinct fluctuations of hardness are found to correspond to the microstructural changes throughout the nugget zone of dissimilar welds.

216 citations

Journal ArticleDOI
TL;DR: Asymmetric supercapacitor cells based on MnO 2 as positive electrode and graphene as negative electrode have been constructed with 1M Na 2 SO 4 aqueous electrolyte.

201 citations

Journal ArticleDOI
TL;DR: In this paper, a 3D graphene oxide/polypyrrole (GO/PPy) composite electrodes have been fabricated via one-step electrochemical co-deposition in an aqueous solution containing pyrrole monomers, GO and LiClO4.
Abstract: Three-dimensional (3D) graphene oxide/polypyrrole (GO/PPy) composite electrodes have been fabricated via one-step electrochemical co-deposition in an aqueous solution containing pyrrole monomers, GO and LiClO4. The concentration of GO in the solution plays an important role in controlling the morphologies of the as-deposited GO/PPy composites, and a relatively low concentration of 0.1 mg mL−1 is favorable for the formation of a 3D interconnected structure. The unique 3D interconnected structure ensures fast diffusion of electrolyte ions through the electrode. As a result, the GO/PPy composite electrode with a mass loading of 0.26 mg cm−2 exhibits the highest specific capacitance of 481.1 F g−1, while the electrode with a larger mass loading of 1.02 mg cm−2 delivers the best area capacitance of 387.6 mF cm−2, at a current density of 0.2 mA cm−2. Moreover, the GO/PPy composite electrodes exhibit good rate capability with capacitance retentions over 80% when the current density load increases from 0.2 to 10 mA cm−2. Both the aqueous and solid-state supercapacitors based on GO/PPy composite electrodes show excellent capacitive properties with good cycling stability, indicating their suitability for applications in energy storage and management.

198 citations


Cited by
More filters
Book
30 Mar 2007
TL;DR: Friction stir welding (FSW) is a relatively new solid-state joining process that is used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding as discussed by the authors.
Abstract: Friction stir welding (FSW) is a relatively new solid-state joining process. This joining technique is energy efficient, environment friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. FSW is considered to be the most significant development in metal joining in a decade. Recently, friction stir processing (FSP) was developed for microstructural modification of metallic materials. In this review article, the current state of understanding and development of the FSW and FSP are addressed. Particular emphasis has been given to: (a) mechanisms responsible for the formation of welds and microstructural refinement, and (b) effects of FSW/FSP parameters on resultant microstructure and final mechanical properties. While the bulk of the information is related to aluminum alloys, important results are now available for other metals and alloys. At this stage, the technology diffusion has significantly outpaced the fundamental understanding of microstructural evolution and microstructure–property relationships.

4,750 citations

01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations

Posted Content
TL;DR: The two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials.
Abstract: We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Mn3O4 nanoparticles grown selectively on RGO sheets over free particle growth in solution allowed for the electrically insulating Mn3O4 nanoparticles wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ~900mAh/g near its theoretical capacity with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn3O4 nanoparticles grown atop. The Mn3O4/RGO hybrid could be a promising candidate material for high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for design and synthesis of battery electrodes based on highly insulating materials.

1,587 citations

Book
12 Mar 2014
TL;DR: In this paper, the effect of reflectivity of the surface, when a pure, monochromatic laser (6) is used, is remedied by the simultaneous application of a relatively shorter wavelength beam (1).
Abstract: In the laser treatment of a workpiece (9), e.g. for surface hardening, melting, alloying, cladding, welding or cutting, the adverse effect of reflectivity of the surface, when a pure, monochromatic laser (6) is used, is remedied by the simultaneous application of a relatively shorter wavelength beam (1). The two beams (1)(5) may be combined by a beam coupler (4) or may reach the workpiece (9) by separate optical paths (not shown). The shorter wavelength beam (1) improves the coupling efficiency of the higher- powered laser beam (5).

1,539 citations

Journal ArticleDOI
TL;DR: The state-of-the-art advancements in FSSCs are reviewed to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs.
Abstract: Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials The next sections briefly summarise the latest progress in flexible electrodes (ie, freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (ie, aqueous, organic, ionic liquids and redox-active gels) Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal–organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed The final section highlights current challenges and future perspectives on research in this thriving field

1,210 citations