scispace - formally typeset
Search or ask a question
Author

Jiabin Wang

Other affiliations: University of East London, University of Bristol, University of London  ...read more
Bio: Jiabin Wang is an academic researcher from University of Sheffield. The author has contributed to research in topics: Magnet & Torque. The author has an hindex of 53, co-authored 302 publications receiving 8452 citations. Previous affiliations of Jiabin Wang include University of East London & University of Bristol.


Papers
More filters
Journal Article•DOI•
TL;DR: A general framework for the analysis and design of a class of tubular linear permanent magnet machines is described, established analytically in terms of a magnetic vector potential and cylindrical coordinate formulation, and the results are validated extensively by comparison with finite element analyses.
Abstract: A general framework for the analysis and design of a class of tubular linear permanent magnet machines is described. The open-circuit and armature reaction magnetic field distributions are established analytically in terms of a magnetic vector potential and cylindrical coordinate formulation, and the results are validated extensively by comparison with finite element analyses. The analytical field solutions allow the prediction of the thrust force, the winding emf, and the self- and mutual-winding inductances in closed forms. These facilitate the characterization of tubular machine topologies and provide a basis for comparative studies, design optimization, and machine dynamic modeling. Some practical issues, such as the effects of slotting and fringing, have also been accounted for and validated by measurements.

388 citations

Journal Article•DOI•
Jiabin Wang1, Kais Atallah1, R. Chin, W.M. Arshad, Heinz Lendenmann •
TL;DR: In this article, the rotor eddy-current loss in permanent magnet brushless ac machines is analyzed and the theoretical derivation is validated by time-stepped transient finite-element analysis.
Abstract: This paper analyzes rotor eddy-current loss in permanent-magnet brushless ac machines. It is shown that analytical or finite-element techniques published in literature for predicting rotor eddy-current loss using space harmonic based approaches may not yield correct results in each magnet segment when one magnet-pole is circumferentially segmented into more than two pieces. It is also shown that the eddy-current loss in each equally segmented piece may differ by a large margin, which implies that the temperature distribution in the magnets will be uneven and the risk of demagnetization has to be carefully assessed. The theoretical derivation is validated by time-stepped transient finite-element analysis.

245 citations

Journal Article•DOI•
TL;DR: This paper introduces a novel virtual signal injection-based control method for maximum torque per ampere (MTPA) operation of interior permanent magnet synchronous machine (IPMSM) drives that is parameter independent in tracking the MTPA points and robust to current/voltage harmonics and motor torque disturbances.
Abstract: This paper introduces a novel virtual signal injection-based control method for maximum torque per ampere (MTPA) operation of interior permanent magnet synchronous machine (IPMSM) drives. The proposed method injects a small virtual current angle signal mathematically for tracking the MTPA operating point and generating d -axis current command by utilizing the inherent characteristic of the MTPA operation. This method is parameter independent in tracking the MTPA points, and it does not inject any real signal to current or voltage command. Consequently, the problems associated with real high-frequency signal injection, such as increases in copper and iron loss can be avoided. Moreover, it is robust to current/voltage harmonics and motor torque disturbances. The proposed method is verified by simulations and experiments under various operating conditions on a prototype IPMSM drive system.

172 citations

Journal Article•DOI•
Jiabin Wang1, D. Howe1•
TL;DR: In this article, the authors describe the analysis, design, and experimental characterization of three-phase tubular modular permanent-magnet machines equipped with quasi-Halbach magnetized magnets and establish an analytical expression for the open-circuit magnetic field distribution, formulated in the cylindrical coordinate system.
Abstract: This paper describes the analysis, design, and experimental characterization of three-phase tubular modular permanent-magnet machines equipped with quasi-Halbach magnetized magnets. It identifies feasible slot/pole number combinations and discusses their relative merits. It establishes an analytical expression for the open-circuit magnetic field distribution, formulated in the cylindrical coordinate system. The expression has been verified by finite-element analysis. The analytical solution allows the prediction of the thrust force and electromotive force in closed forms, and provides an effective tool for design optimization, as will be described in Part II of the paper.

163 citations

Journal Article•DOI•
Xiao Chen1, Jiabin Wang1, Bhaskar Sen1, Panagiotis Lazari1, Tianfu Sun1 •
TL;DR: A high-fidelity and computationally efficient machine model considering the magnetic saturation, the spatial harmonics, and the iron loss effect based on the inverse solution of the flux linkages extracted via finite-element analysis (FEA).
Abstract: Interior permanent-magnet (IPM) machines exhibit relatively large spatial harmonics in phase voltages and high nonlinearity in torque production due to both the presence of reluctance torque and the magnetic saturation in stator and rotor cores. To simulate the real electromagnetic behavior of IPM machines, this paper proposes a high-fidelity and computationally efficient machine model considering the magnetic saturation, the spatial harmonics, and the iron loss effect based on the inverse solution of the flux linkages extracted via finite-element analysis (FEA). Neither FEA nor a derivative computation is involved in the time-stepping simulation; thereby, the proposed model is computationally efficient and numerically robust. The high fidelity of the proposed machine model is validated by both the FEA and the experimental results.

162 citations


Cited by
More filters
Journal Article•DOI•
TL;DR: An attempt is made to provide a brief review of the current state of the art in the area of variable-speed drives, addressing the reasons for potential use of multiphase rather than three-phase drives and the available approaches to multiphases machine designs.
Abstract: Although the concept of variable-speed drives, based on utilization of multiphase machines, dates back to the late 1960s, it was not until the mid- to late 1990s that multiphase drives became serious contenders for various applications. These include electric ship propulsion, locomotive traction, electric and hybrid electric vehicles, ldquomore-electricrdquo aircraft, and high-power industrial applications. As a consequence, there has been a substantial increase in the interest for such drive systems worldwide, resulting in a huge volume of work published during the last ten years. An attempt is made in this paper to provide a brief review of the current state of the art in the area. After addressing the reasons for potential use of multiphase rather than three-phase drives and the available approaches to multiphase machine designs, various control schemes are surveyed. This is followed by a discussion of the multiphase voltage source inverter control. Various possibilities for the use of additional degrees of freedom that exist in multiphase machines are further elaborated. Finally, multiphase machine applications in electric energy generation are addressed.

1,683 citations

Journal Article•DOI•
TL;DR: A detailed overview of the state-of-the-art in multiphase variable-speed motor drives can be found in this article, where the authors provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as the approaches to the design of fault tolerant strategies for post-fault drive operation.
Abstract: The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operation.

1,445 citations

Journal Article•DOI•
TL;DR: In this paper, a review of control strategies, stability analysis, and stabilization techniques for dc microgrids is presented, where overall control is systematically classified into local and coordinated control levels according to respective functionalities in each level.
Abstract: This paper presents a review of control strategies, stability analysis, and stabilization techniques for dc microgrids (MGs). Overall control is systematically classified into local and coordinated control levels according to respective functionalities in each level. As opposed to local control, which relies only on local measurements, some line of communication between units needs to be made available in order to achieve the coordinated control. Depending on the communication method, three basic coordinated control strategies can be distinguished, i.e., decentralized, centralized, and distributed control. Decentralized control can be regarded as an extension of the local control since it is also based exclusively on local measurements. In contrast, centralized and distributed control strategies rely on digital communication technologies. A number of approaches using these three coordinated control strategies to achieve various control objectives are reviewed in this paper. Moreover, properties of dc MG dynamics and stability are discussed. This paper illustrates that tightly regulated point-of-load converters tend to reduce the stability margins of the system since they introduce negative impedances, which can potentially oscillate with lightly damped power supply input filters. It is also demonstrated that how the stability of the whole system is defined by the relationship of the source and load impedances, referred to as the minor loop gain. Several prominent specifications for the minor loop gain are reviewed. Finally, a number of active stabilization techniques are presented.

1,131 citations

Journal Article•DOI•
TL;DR: This paper will cover the theory and design of FSCW synchronous PM machines, achieving high-power density, flux-weakening capability, comparison of single- versus double-layer windings, fault-tolerance rotor losses, parasitic effects, compared of interior versus surface PM machine, and various types of machines.
Abstract: Fractional-slot concentrated-winding (FSCW) synchronous permanent magnet (PM) machines have been gaining interest over the last few years. This is mainly due to the several advantages that this type of windings provides. These include high-power density, high efficiency, short end turns, high slot fill factor particularly when coupled with segmented stator structures, low cogging torque, flux-weakening capability, and fault tolerance. This paper is going to provide a thorough analysis of FSCW synchronous PM machines in terms of opportunities and challenges. This paper will cover the theory and design of FSCW synchronous PM machines, achieving high-power density, flux-weakening capability, comparison of single- versus double-layer windings, fault-tolerance rotor losses, parasitic effects, comparison of interior versus surface PM machines, and various types of machines. This paper will also provide a summary of the commercial applications that involve FSCW synchronous PM machines.

1,126 citations

Journal Article•DOI•
30 Apr 2007
TL;DR: In this article, the relative merits of induction, switched reluctance, and permanent-magnet (PM) brushless machines and drives for application in electric, hybrid, and fuel cell vehicles are reviewed.
Abstract: This paper reviews the relative merits of induction, switched reluctance, and permanent-magnet (PM) brushless machines and drives for application in electric, hybrid, and fuel cell vehicles, with particular emphasis on PM brushless machines. The basic operational characteristics and design requirements, viz. a high torque/power density, high efficiency over a wide operating range, and a high maximum speed capability, as well as the latest developments, are described. Permanent-magnet brushless dc and ac machines and drives are compared in terms of their constant torque and constant power capabilities, and various PM machine topologies and their performance are reviewed. Finally, methods for enhancing the PM excitation torque and reluctance torque components and, thereby, improving the torque and power capability, are described

1,091 citations