scispace - formally typeset
Search or ask a question
Author

Jiahao Liu

Bio: Jiahao Liu is an academic researcher from Shanghai Maritime University. The author has contributed to research in topics: Lithium-ion battery & Combustion. The author has an hindex of 17, co-authored 54 publications receiving 787 citations. Previous affiliations of Jiahao Liu include University of Science and Technology of China & City University of Hong Kong.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an experimental study is performed to assess the fire hazards of lithium-ion batteries at different atmospheric pressures by means of the in-situ calorimeters built in a sea-level city Hefei (100.8kPa, 24m) and a high altitude city Lhasa (64.3kPa 3650m), respectively.

100 citations

Journal ArticleDOI
TL;DR: In this article, a fire calorimeter is used to test the combustion performance of two commercial 18650 lithium ion batteries (LiCoO2 and LiFePO4) at different state of charge (SOC).
Abstract: In applications of lithium ion batteries, it is a requisite to precisely appraise their fire and explosion hazards. In the current study, a fire calorimeter is utilized to test the combustion performance of two commercial 18650 lithium ion batteries (LiCoO2 and LiFePO4) at different state of charge (SOC). Characteristics on thermal hazards of lithium ion batteries including surface temperature, time to ejection, mass loss, and heat release rate (HRR) are measured and evaluated. In case of thermal runaway, all the lithium ion batteries will rupture the can and catch fire even explode automatically. The solid electrolyte interface layer decomposition and the polymer separator shrinking are direct causes of the lithium ion battery fire. The experimental results show that the HRR and total heat generally rise as the SOC increases, whereas the time to first ejection and the time gap between first and second ejection decrease. LiCoO2 18650 battery shows higher explosion risk than LiFePO4 18650, as the former has released much more oxygen. The experimental combustion heats calculated and modified in the oxygen consumption method reveal that the internally generated oxygen have significant effect on the estimate of the heat, where the largest modified rate is 29.9 for 100 % SOC LiCoO2 18650 battery. The results can provide scientific basis for fire protection during the storage and distribution of lithium ion batteries.

99 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the mechanisms of thermal and fire propagation of multiple lithium-ion battery (LIB) in the package and found that more than 5.6 batteries can be ignited at the same time and 32 batteries can burn together to reach the largest mass loss rate.

88 citations

Journal ArticleDOI
TL;DR: In this paper, a series of experiments were established to investigate the thermal and fire characteristics of a commercial lithium-ion battery under overcharge/overdischarge failure conditions, and it was demonstrated that the battery can fail when overcharged/over-discharged to a critical degree regardless of the charge/discharge rate.
Abstract: A lithium-ion battery (LIB) may experience overcharge or over-discharge when it is used in a battery pack because of capacity variation of different batteries in the pack and the difficulty of maintaining identical state of charge (SOC) of every single battery. A series of experiments were established to investigate the thermal and fire characteristics of a commercial LIB under overcharge/over-discharge failure conditions. According to the results, it is clear that the batteries experienced a clear temperature rise in the overcharge/over-discharge process. The temperature rise worsened and required less time when the battery was overcharged/over-discharged to failure with the increasing charge/discharge rate. Besides, the closer the position to the opening of the battery, the higher the surface temperature. It was demonstrated that LIBs can fail when overcharged/over-discharged to a critical degree regardless of the charge/discharge rate. Under different rates, the final capacities were around a critical value. Finally, there existed an explosion phenomenon in the external heating test of battery failure after overcharge, whereas the fire behaviors of the over-discharged battery were much more moderate.

83 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive review of the thermal runaway phenomenon and related fire dynamics in singe and multi-cell battery packs, as well as potential fire prevention measures.

667 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes aspects of battery safety and discusses the related issues, strategies, and testing standards, concluding with insights into potential future developments and the prospects for safer lithium-ion batteries.

434 citations

01 Jan 2016
TL;DR: The sfpe handbook of fire protection engineering is universally compatible with any devices to read and is available in the authors' digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading sfpe handbook of fire protection engineering. Maybe you have knowledge that, people have look numerous times for their favorite books like this sfpe handbook of fire protection engineering, but end up in infectious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they juggled with some malicious bugs inside their laptop. sfpe handbook of fire protection engineering is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the sfpe handbook of fire protection engineering is universally compatible with any devices to read.

334 citations

Journal ArticleDOI
Binghe Liu1, Yikai Jia1, Chunhao Yuan1, Lubing Wang1, Xiang Gao1, Sha Yin1, Jun Xu1 
TL;DR: In this article, the authors present a review of experimental, theoretical, and modeling studies in each battery evolution phase under mechanical abuse loading, and summarize a state-of-the-art modeling framework to describe the multiphysical behavior of batteries.

330 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the latest fire-safety issues of EVs related to thermal runaway and fire in Li-ion batteries and provide a qualitative understanding of the fire risk and hazards associated with battery powered EVs.
Abstract: Over the last decade, the electric vehicle (EV) has significantly changed the car industry globally, driven by the fast development of Li-ion battery technology. However, the fire risk and hazard associated with this type of high-energy battery has become a major safety concern for EVs. This review focuses on the latest fire-safety issues of EVs related to thermal runaway and fire in Li-ion batteries. Thermal runaway or fire can occur as a result of extreme abuse conditions that may be the result of the faulty operation or traffic accidents. Failure of the battery may then be accompanied by the release of toxic gas, fire, jet flames, and explosion. This paper is devoted to reviewing the battery fire in battery EVs, hybrid EVs, and electric buses to provide a qualitative understanding of the fire risk and hazards associated with battery powered EVs. In addition, important battery fire characteristics involved in various EV fire scenarios, obtained through testing, are analysed. The tested peak heat release rate (PHHR in MW) varies with the energy capacity of LIBs ($$E_{B}$$ in Wh) crossing different scales as $$PHRR = 2E_{B}^{0.6}$$. For the full-scale EV fire test, limited data have revealed that the heat release and hazard of an EV fire are comparable to that of a fossil-fuelled vehicle fire. Once the onboard battery involved in fire, there is a greater difficulty in suppressing EV fires, because the burning battery pack inside is inaccessible to externally applied suppressant and can re-ignite without sufficient cooling. As a result, an excessive amount of suppression agent is needed to cool the battery, extinguish the fire, and prevent reignition. By addressing these concerns, this review aims to aid researchers and industries working with batteries, EVs and fire safety engineering, to encourage active research collaborations, and attract future research and development on improving the overall safety of future EVs. Only then will society achieve the same comfort level for EVs as they have for conventional vehicles.

303 citations