scispace - formally typeset
Search or ask a question
Author

JiaJun Fu

Bio: JiaJun Fu is an academic researcher from Nanjing University of Science and Technology. The author has contributed to research in topics: Mesoporous silica & Coating. The author has an hindex of 32, co-authored 70 publications receiving 2453 citations. Previous affiliations of JiaJun Fu include Nanjing University & Shanghai Jiao Tong University.


Papers
More filters
Journal ArticleDOI
26 Nov 2013-ACS Nano
TL;DR: From the experimental results of SVET, the smart nanocontainers with the acid and alkaline dual stimuli-responsive characteristics can simultaneously suppress corrosion activities on microanodic and microcathodic regions, demonstrating an excellent self-healing functionality.
Abstract: The present paper introduces an intelligent anticorrosion coating, based on the mechanized hollow mesoporous silica nanoparticles (HMSs) as smart nanocontainers implanted into the self-assembled nanophase particles (SNAP) coating. As the key component, smart nanocontainers assembled by installing supramolecular nanovalves in the form of the bistable pseudorotaxanes on the external surface of HMSs realize pH-responsive controlled release for corrosion inhibitor, caffeine molecules. The smart nanocontainers encapsulate caffeine molecules at neutral pH, and release the molecules either under acidic or alkaline conditions, which make them spontaneously experience the pH excursions arisen from corrosion process and respond quickly. The intelligent anticorrosion coating was deposited on the surface of aluminum alloy AA2024 and investigated by electrochemical impedance spectroscopy and scanning vibrating electrode technique (SVET). Compared with the pure SNAP coating, the well-dispersed smart nanocontainers not ...

227 citations

Journal ArticleDOI
TL;DR: In this article, a superhydrophobic, self-healing anti-corrosion coating was prepared by in-situ growth of tungstate corrosion inhibitor intercalated layer double hydroxides (LDHs) conversion film on the AZ31B magnesium alloy and then post-sealing a hydrophobic polymer layer of ureido crosslinked polydimethylsiloxane (U-PDMS) with laurate modified LDHs power (La-LDH) on the surface.

157 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the inhibition of mild steel corrosion in 1.0 M HCl solution by quinoxaline and its derivatives at 25 °C using weight loss measurement and Tafel polarization technique.
Abstract: The inhibition of mild steel corrosion in 1.0 M HCl solution by quinoxaline and its derivatives were evaluated at 25 °C using weight loss measurement and Tafel polarization technique. These measurements reveal that the inhibition efficiency increased with increase in the concentrations of inhibitors, and the inhibition efficiencies decrease in the order 4-(quinoxalin-2-yl)phenol (PHQX) > 2-quinoxalinethiol (THQX) > 2-chloroquinoxaline (CHQX) > quinoxaline (QX). Tafel polarization curves show that all the investigated inhibitors act as mixed-type inhibitors. Quantum chemical calculation was applied to correlate electronic structure parameters of quinoxaline and its derivatives with their inhibition performances. Molecular dynamics simulations were also used to optimize the equilibrium configurations of the inhibitor molecules on the iron surface. The efficiency order of the studied inhibitors obtained by experimental results was verified by theoretical calculations.

153 citations

Journal ArticleDOI
TL;DR: In this paper, a colorless transparent glassy polyurethane assembled using low-molecular-weight oligomers carrying a large number of loosely packed weak hydrogen bonds (H-bonds), which has a glass transition temperature (Tg ) up to 36.8 °C and behaves unprecedentedly robust stiffness with a tensile Young's modulus of 1.56±0.03 GPa.
Abstract: We designed and synthesized a colorless transparent glassy polyurethane assembled using low-molecular-weight oligomers carrying a large number of loosely packed weak hydrogen bonds (H-bonds), which has a glass transition temperature (Tg ) up to 36.8 °C and behaves unprecedentedly robust stiffness with a tensile Young's modulus of 1.56±0.03 GPa. Fast room-temperature self-healing was observed in this polymer network: the broken glassy polyurethane (GPU) specimen can recover to a tensile strength up 7.74±0.76 MPa after healing for as little as 10 min, which is prominent compared to reported room-temperature self-healing polymers. The high density of loose-packed hydrogen bonds can reversibly dissociate/associate below Tg of GPU (that is secondary relaxation), which enables the reconfiguration of the damaged network in the fractured interfaces, despite the extremely slow diffusion dynamics of molecular chains under room temperature. This GPU shows potential application as an optical lens.

127 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 2015-Small
TL;DR: The properties and synthesis methods of these carbon nanodots are reviewed and emphasis is placed on their biological (both fundamental and theranostic) applications.
Abstract: The emerging graphene quantum dots (GQDs) and carbon dots (C-dots) have gained tremendous attention for their enormous potentials for biomedical applications, owing to their unique and tunable photoluminescence properties, exceptional physicochemical properties, high photostability, biocompatibility, and small size. This article aims to update the latest results in this rapidly evolving field and to provide critical insights to inspire more exciting developments. We comparatively review the properties and synthesis methods of these carbon nanodots and place emphasis on their biological (both fundamental and theranostic) applications.

1,665 citations

Journal ArticleDOI
TL;DR: The latest generations of sophisticated synthetic molecular machine systems in which the controlled motion of subcomponents is used to perform complex tasks are discussed, paving the way to applications and the realization of a new era of “molecular nanotechnology”.
Abstract: The widespread use of molecular machines in biology has long suggested that great rewards could come from bridging the gap between synthetic molecular systems and the machines of the macroscopic world. In the last two decades, it has proved possible to design synthetic molecular systems with architectures where triggered large amplitude positional changes of submolecular components occur. Perhaps the best way to appreciate the technological potential of controlled molecular-level motion is to recognize that nanomotors and molecular-level machines lie at the heart of every significant biological process. Over billions of years of evolution, nature has not repeatedly chosen this solution for performing complex tasks without good reason. When mankind learns how to build artificial structures that can control and exploit molecular level motion and interface their effects directly with other molecular-level substructures and the outside world, it will potentially impact on every aspect of functional molecule and materials design. An improved understanding of physics and biology will surely follow. The first steps on the long path to the invention of artificial molecular machines were arguably taken in 1827 when the Scottish botanist Robert Brown observed the haphazard motion of tiny particles under his microscope.1,2 The explanation for Brownian motion, that it is caused by bombardment of the particles by molecules as a consequence of the kinetic theory of matter, was later provided by Einstein, followed by experimental verification by Perrin.3,4 The random thermal motion of molecules and its implications for the laws of thermodynamics in turn inspired Gedankenexperiments (“thought experiments”) that explored the interplay (and apparent paradoxes) of Brownian motion and the Second Law of Thermodynamics. Richard Feynman’s famous 1959 lecture “There’s plenty of room at the bottom” outlined some of the promise that manmade molecular machines might hold.5,6 However, Feynman’s talk came at a time before chemists had the necessary synthetic and analytical tools to make molecular machines. While interest among synthetic chemists began to grow in the 1970s and 1980s, progress accelerated in the 1990s, particularly with the invention of methods to make mechanically interlocked molecular systems (catenanes and rotaxanes) and control and switch the relative positions of their components.7−24 Here, we review triggered large-amplitude motions in molecular structures and the changes in properties these can produce. We concentrate on conformational and configurational changes in wholly covalently bonded molecules and on catenanes and rotaxanes in which switching is brought about by various stimuli (light, electrochemistry, pH, heat, solvent polarity, cation or anion binding, allosteric effects, temperature, reversible covalent bond formation, etc.). Finally, we discuss the latest generations of sophisticated synthetic molecular machine systems in which the controlled motion of subcomponents is used to perform complex tasks, paving the way to applications and the realization of a new era of “molecular nanotechnology”. 1.1. The Language Used To Describe Molecular Machines Terminology needs to be properly and appropriately defined and these meanings used consistently to effectively convey scientific concepts. Nowhere is the need for accurate scientific language more apparent than in the field of molecular machines. Much of the terminology used to describe molecular-level machines has its origins in observations made by biologists and physicists, and their findings and descriptions have often been misinterpreted and misunderstood by chemists. In 2007 we formalized definitions of some common terms used in the field (e.g., “machine”, “switch”, “motor”, “ratchet”, etc.) so that chemists could use them in a manner consistent with the meanings understood by biologists and physicists who study molecular-level machines.14 The word “machine” implies a mechanical movement that accomplishes a useful task. This Review concentrates on systems where a stimulus triggers the controlled, relatively large amplitude (or directional) motion of one molecular or submolecular component relative to another that can potentially result in a net task being performed. Molecular machines can be further categorized into various classes such as “motors” and “switches” whose behavior differs significantly.14 For example, in a rotaxane-based “switch”, the change in position of a macrocycle on the thread of the rotaxane influences the system only as a function of state. Returning the components of a molecular switch to their original position undoes any work done, and so a switch cannot be used repetitively and progressively to do work. A “motor”, on the other hand, influences a system as a function of trajectory, meaning that when the components of a molecular motor return to their original positions, for example, after a 360° directional rotation, any work that has been done is not undone unless the motor is subsequently rotated by 360° in the reverse direction. This difference in behavior is significant; no “switch-based” molecular machine can be used to progressively perform work in the way that biological motors can, such as those from the kinesin, myosin, and dynein superfamilies, unless the switch is part of a larger ratchet mechanism.14

1,434 citations

Journal ArticleDOI
TL;DR: The different types of materials used as delivery vehicles for chemotherapeutic agents and their structural characteristics that improve the therapeutic efficacy of their drugs are discussed and recent scientific advances in the area of chemotherapy are described.
Abstract: Although conventional chemotherapy has been successful to some extent, the main drawbacks of chemotherapy are its poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, development of multiple drug resistance, and non-specific targeting. The main aim in the development of drug delivery vehicles is to successfully address these delivery-related problems and carry drugs to the desired sites of therapeutic action while reducing adverse side effects. In this review, we will discuss the different types of materials used as delivery vehicles for chemotherapeutic agents and their structural characteristics that improve the therapeutic efficacy of their drugs and will describe recent scientific advances in the area of chemotherapy, emphasizing challenges in cancer treatments.

1,229 citations

Book ChapterDOI
TL;DR: Attempts to design and synthesize molecular-level machines using cyclodextrins as a cyclic component of molecular shuttles, motors, and machines are described.
Abstract: This chapter overviews molecular machines based on cyclodextrins (CDs). The categories of CD-based molecular machines, external stimuli for CD-based molecular machines, and typical examples of CD-based molecular machines are briefly described.

806 citations