scispace - formally typeset
Search or ask a question
Author

Jiali Tan

Bio: Jiali Tan is an academic researcher from South China Agricultural University. The author has contributed to research in topics: Abscisic acid & Medicago falcata. The author has an hindex of 1, co-authored 1 publications receiving 93 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Overexpression of MfMIPS1 in tobacco increased the MIPS activity and levels of myo-inositol, galactinol and raffinose, resulting in enhanced resistance to chilling, drought and salt stresses in transgenic tobacco plants.
Abstract: myo-Inositol phosphate synthase (MIPS) is the key enzyme of myo-inositol synthesis, which is a central molecule required for cell metabolism and plant growth as a precursor to a large variety of compounds. A full-length fragment of MfMIPS1 cDNA was cloned from Medicago falcata that is more cold-tolerant than Medicago sativa. While MfMIPS1 transcript was induced in response to cold, dehydration and salt stress, MIPS transcript and myo-inositol were maintained longer and at a higher level in M. falcata than in M. sativa during cold acclimation at 5 °C. MfMIPS1 transcript was induced by hydrogen peroxide (H(2) O(2)) and nitric oxide (NO), but was not responsive to abscisic acid (ABA). Pharmacological experiments revealed that H(2) O(2) and NO are involved in the regulation of MfMIPS1 expression by cold and dehydration, but not by salt. Overexpression of MfMIPS1 in tobacco increased the MIPS activity and levels of myo-inositol, galactinol and raffinose, resulting in enhanced resistance to chilling, drought and salt stresses in transgenic tobacco plants. It is suggested that MfMIPS1 is induced by diverse environmental factors and confers resistance to various abiotic stresses.

111 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is proposed that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress.
Abstract: Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops.

283 citations

Journal ArticleDOI
TL;DR: Evidence is introduced in the understanding of the crosstalk among H2O2, NO, and Ca2+ signaling which regulates plant growth and development, and other cellular and physiological responses to abiotic stresses.
Abstract: Hydrogen peroxide (H2O2), as a reactive oxygen species, is widely generated in many biological systems. It has been considered as an important signaling molecule that mediates various physiological and biochemical processes in plants. Normal metabolism in plant cells results in H2O2 generation, from a variety of sources. Also, it is now clear that nitric oxide (NO) and calcium (Ca2+) function as signaling molecules in plants. Both H2O2 and NO are involved in plant development and abiotic responses. A wide range of evidences suggest that NO could be generated under similar stress conditions and with similar kinetics as H2O2. The interplay between H2O2 and NO has important functional implications to modulate transduction processes in plants. Moreover, close interaction also exists between H2O2 and Ca2+ in response to development and abiotic stresses in plants. Cellular responses to H2O2 and Ca2+ signaling systems are complex. There is quite a bit of interaction between H2O2 and Ca2+ signaling in responses to several stimuli. This review aims to introduce these evidences in our understanding of the crosstalk among H2O2, NO and Ca2+ signaling which regulates plant growth and development, and other cellular and physiological responses to abiotic stresses.

274 citations

Journal ArticleDOI
TL;DR: The results showed that overexpression of MfSAMS1 promoted polyamine synthesis and oxidation, which in turn improved H2 O2 -induced antioxidant protection, as a result enhanced tolerance to freezing and chilling stress in transgenic plants.
Abstract: S-adenosylmethionine synthetase (SAMS) is the key enzyme catalysing the formation of S-adenosylmethionine (SAM), a precursor of polyamines and ethylene. To investigate the potential role of SAMS in cold tolerance, we isolated MfSAMS1 from the cold-tolerant germplasm Medicago sativa subsp. falcata and analysed the association of SAM-derived polyamines with cold tolerance. The expression of MfSAMS1 in leaves was greatly induced by cold, abscisic acid (ABA), H2O2 and nitric oxide (NO). Our data revealed that ABA, H2O2 and NO interactions mediated the cold-induced MfSAMS1 expression and cold acclimation in falcata. SAM, putrescine, spermidine and spermine levels, ethylene production and polyamine oxidation were sequentially altered in response to cold, indicating that SAMS-derived SAM is preferentially used in polyamine synthesis and homeostasis during cold acclimation. Antioxidant enzyme activities were also induced in response to cold and showed correlation with polyamine oxidation. Overexpression of MfSAMS1 in tobacco resulted in elevated SAM levels, but polyamine levels and ethylene production in the transgenic plants were not significantly changed. Compared to the wild type, transgenic plants had increased levels of apoplastic H2O2, higher transcript levels of genes involved in polyamine synthesis and oxidation, and higher activities of polyamine oxidation and antioxidant enzymes. The results showed that overexpression of MfSAMS1 promoted polyamine synthesis and oxidation, which in turn improved H2 O2 -induced antioxidant protection, as a result enhanced tolerance to freezing and chilling stress in transgenic plants. This is the first report demonstrating that SAMS plays an important role in plant tolerance to cold via up-regulating polyamine oxidation.

160 citations

Journal ArticleDOI
TL;DR: In this article, the authors found that the expression of the sweet potato IbMIPS1 gene was induced by NaCl, polyethylene glycol (PEG), abscisic acid (ABA), and stem nematodes.
Abstract: Summary Myo-inositol-1-phosphate synthase (MIPS) is a key rate limiting enzyme in myo-inositol biosynthesis. The MIPS gene has been shown to improve tolerance to abiotic stresses in several plant species. However, its role in resistance to biotic stresses has not been reported. In this study, we found that expression of the sweet potato IbMIPS1 gene was induced by NaCl, polyethylene glycol (PEG), abscisic acid (ABA) and stem nematodes. Its overexpression significantly enhanced stem nematode resistance as well as salt and drought tolerance in transgenic sweet potato under field conditions. Transcriptome and real-time quantitative PCR analyses showed that overexpression of IbMIPS1 up-regulated the genes involved in inositol biosynthesis, phosphatidylinositol (PI) and ABA signalling pathways, stress responses, photosynthesis and ROS-scavenging system under salt, drought and stem nematode stresses. Inositol, inositol-1,4,5-trisphosphate (IP3), phosphatidic acid (PA), Ca2+, ABA, K+, proline and trehalose content was significantly increased, whereas malonaldehyde (MDA), Na+ and H2O2 content was significantly decreased in the transgenic plants under salt and drought stresses. After stem nematode infection, the significant increase of inositol, IP3, PA, Ca2+, ABA, callose and lignin content and significant reduction of MDA content were found, and a rapid increase of H2O2 levels was observed, peaked at 1 to 2 days and thereafter declined in the transgenic plants. This study indicates that the IbMIPS1 gene has the potential to be used to improve the resistance to biotic and abiotic stresses in plants.

152 citations

Journal ArticleDOI
TL;DR: Overexpression of MfGolS1 in tobacco resulted in elevated tolerance to freezing and chilling in transgenic plants as a result of enhanced levels of galactinol, raffinose and stachyose and Tolerance to drought and salt stresses was increased in the transgenic tobacco plants.
Abstract: Galactinol synthase (GolS, EC 2.4.1.123) catalyzes formation of galactinol and the subsequent synthesis of raffinose family oligosaccharides. The relationship of GolS to drought and salt tolerance has been well documented, however, little information is available about the role of GolS gene in cold tolerance. A coding sequence of MfGolS1 cDNA was cloned from Medicago sativa spp falcata (i.e. M. falcata), a species that exhibits greater cold tolerance than alfalfa (M. sativa). MfGolS1 transcript was not detected in untreated vegetative tissues using RNA blot hybridization; however, it was greatly induced in leaves, but not in stem and petiole, after cold treatment. Higher levels of MfGolS1 transcript were induced and maintained in M. falcata than in M. sativa during cold acclimation. Accordingly, more sugars including sucrose, galactinol, raffinose and stachyose were accumulated in M. falcata than in M. sativa. The data indicated that MfGolS1 transcript and its resultant sugar accumulation were associated with the differential cold tolerance between M. falcata and M. sativa. MfGolS1 transcript was weakly induced by dehydration and salt stresses, but not responsive to abscisic acid. MfGolS1 could be induced by myo-inositol, which is proposed to participate in cold-induced MfGolS1 expression. Overexpression of MfGolS1 in tobacco resulted in elevated tolerance to freezing and chilling in transgenic plants as a result of enhanced levels of galactinol, raffinose and stachyose. Tolerance to drought and salt stresses was also increased in the transgenic tobacco plants. It is suggested that MfGolS1 plays an important role in plant tolerance to abiotic stresses.

115 citations