scispace - formally typeset
Search or ask a question
Author

Jian-Chiun Liou

Other affiliations: National Tsing Hua University
Bio: Jian-Chiun Liou is an academic researcher from Industrial Technology Research Institute. The author has contributed to research in topics: Backlight & Integrated circuit. The author has an hindex of 8, co-authored 39 publications receiving 2045 citations. Previous affiliations of Jian-Chiun Liou include National Tsing Hua University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The influences of annealing time on the densification, crystallization, resistivity (ρ), hall mobility (μ), and carrier concentration of the CIS absorber layers were well investigated in this study.
Abstract: In this study, the Mo-electrode thin films were deposited by a two-stepped process, and the high-purity copper indium selenide-based powder (CuInSe2, CIS) was fabricated by hydrothermal process by Nanowin Technology Co. Ltd. From the X-ray pattern of the CIS precursor, the mainly crystalline phase was CIS, and the almost undetectable CuSe phase was observed. Because the CIS powder was aggregated into micro-scale particles and the average particle sizes were approximately 3 to 8 μm, the CIS power was ground into nano-scale particles, then the 6 wt.% CIS particles were dispersed into isopropyl alcohol to get the solution for spray coating method. Then, 0.1 ml CIS solution was sprayed on the 20 mm × 10 mm Mo/glass substrates, and the heat treatment for the nano-scale CIS solution under various parameters was carried out in a selenization furnace. The annealing temperature was set at 550°C, and the annealing time was changed from 5 to 30 min, without extra Se content was added in the furnace. The influences of annealing time on the densification, crystallization, resistivity (ρ), hall mobility (μ), and carrier concentration of the CIS absorber layers were well investigated in this study.

1,861 citations

Patent
29 Sep 2006
TL;DR: In this paper, a flexible electronic assembly including a flexible circuit board and at least one electronic component is provided, where the flexible angle of the flexible assembly is greater than 5 degrees and the electronic components are disposed on the flexible circuit boards and electrically connected.
Abstract: A flexible electronic assembly including a flexible circuit board and at least one electronic component is provided. The flexible circuit board includes at least one dielectric film layer and at least one patterned conductive layer disposed on the dielectric film layer. The electronic component is disposed on the flexible circuit board and electrically connected to the flexible circuit board. The flexible angle of the flexible electronic assembly is greater than 5 degrees.

45 citations

Proceedings ArticleDOI
TL;DR: A 120Hz LCD and an LED dynamic backlight to overcome the hold-type characteristic of an LCD are used to implement a time-multiplexed 3D display and a synchronization circuit is developed to connect the time scheme of the vertical sync.
Abstract: Although a naked-eye 3D display is more convenient to watch for a viewer, so far and in the near future the image quality of a stereo display watched with special glasses is still much better than the former. e.g. the viewing angle, the crosstalk, the resolution, etc. While focusing on the glasses-type stereo display, the image performance of a time multiplexed shutter-glasses-type 3D display should be better than that of a spatial multiplexed polarization-encoded 3D display. Shutter-glasses-type 3D display was implemented many years ago by CRT. However, due to the generation supersedure the CRT was replaced by LCD, the shutter-glasses solution couldn't work for several years as a result of the long response time of LCD. Thanks to the development of over-drive technology, the response time of LCD is getting faster, and a 100-120Hz panel refresh rate is possible. Therefore, 3D game fans have a very good opportunity to watch full resolution, large viewing angle and low crosstalk stereo LCDs again. In this paper, a 120Hz LCD and an LED dynamic backlight to overcome the hold-type characteristic of an LCD are used to implement a time-multiplexed 3D display. A synchronization circuit is developed to connect the time scheme of the vertical sync. signal from the display card, the scanning backlight and the shutter glasses. The crosstalk under different scanning conditions is measured.

45 citations

Journal ArticleDOI
TL;DR: A novel time-multiplexed autostereoscopic multi-view full resolution 3D display based on the lenticular lens array in association with the control of the active dynamic LED backlight is proposed and experimentally demonstrated.
Abstract: We propose and experimentally demonstrate a novel time-multiplexed autostereoscopic multi-view full resolution 3D display based on the lenticular lens array in association with the control of the active dynamic LED backlight. The lenticular lenses of the lens array optical system receive the light and deflect the light into each viewing zone in a time sequence.

28 citations

Patent
08 Oct 2009
TL;DR: In this paper, a stereo display including a display panel unit, a shutter glasses unit, and a backlight unit is provided, where a right eye image and a left eye image are simultaneously displayed according to a right-eye synchronizing vertical signal.
Abstract: A stereo display including a display panel unit, a shutter glasses unit, and a backlight unit is provided. The display panel unit sequentially displays a right eye image and a left eye image according to a right eye synchronizing vertical signal and a left eye synchronizing vertical signal. The shutter glasses unit has a right eye glass and a left eye glass, wherein the right eye glass is synchronously opened according to the right eye synchronizing vertical signal, and the left eye glass is synchronously opened according to the left eye synchronizing vertical signal. The backlight unit provides a light source to the display panel unit, wherein the backlight unit is synchronously turned on and off according to the right eye synchronizing vertical signal, and the backlight unit is also synchronously turned on and off according to the left eye synchronizing vertical signal.

26 citations


Cited by
More filters
PatentDOI
06 Apr 2012-Science
TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

1,673 citations

Journal ArticleDOI
TL;DR: This work proposes to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs.
Abstract: Molecular imprinting technology (MIT), often described as a method of making a molecular lock to match a molecular key, is a technique for the creation of molecularly imprinted polymers (MIPs) with tailor-made binding sites complementary to the template molecules in shape, size and functional groups. Owing to their unique features of structure predictability, recognition specificity and application universality, MIPs have found a wide range of applications in various fields. Herein, we propose to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs. The fundamentals of MIPs involving essential elements, preparation procedures and characterization methods are briefly outlined. Smart MIT for MIPs is especially highlighted including ingenious MIT (surface imprinting, nanoimprinting, etc.), special strategies of MIT (dummy imprinting, segment imprinting, etc.) and stimuli-responsive MIT (single/dual/multi-responsive technology). By virtue of smart MIT, new formatted MIPs gain popularity for versatile applications, including sample pretreatment/chromatographic separation (solid phase extraction, monolithic column chromatography, etc.) and chemical/biological sensing (electrochemical sensing, fluorescence sensing, etc.). Finally, we propose the remaining challenges and future perspectives to accelerate the development of MIT, and to utilize it for further developing versatile MIPs with a wide range of applications (650 references).

1,647 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review on the preparation and application of electrospun nanofiber membranes as the barrier layer for water treatment, with emphasis on the reinforcement and post-treatment of electro-spun polymer membranes.

742 citations

Journal ArticleDOI
TL;DR: In this article, the state of the art in photocatalytic CO2 reduction over titanium oxide (TiO2) nanostructured materials, with emphasis on material design and reactor configurations, is presented.
Abstract: The continuous combustion of non-renewable fossil fuels and depletion of existing resources is intensifying the research and development of alternative future energy options that can directly abate and process ever-increasing carbon dioxide (CO2) emissions. Since CO2 is a thermodynamically stable compound, its reduction must not consume additional energy or increase net CO2 emissions. Renewable sources like solar energy provide readily available and continuous light supply required for driving this conversion process. Therefore, the use of solar energy to drive CO2 photocatalytic reactions simultaneously addresses the aforementioned challenges, while producing sustainable fuels or chemicals suitable for use in existing energy infrastructure. Recent progress in this area has focused on the development and testing of promising TiO2 based photocatalysts in different reactor configurations due to their unique physicochemical properties for CO2 photoreduction. TiO2 nanostructured materials with different morphological and textural properties modified by using organic and inorganic compounds as photosensitizers (dye sensitization), coupling semiconductors of different energy levels or doping with metals or non-metals have been tested. This review presents contemporary views on state of the art in photocatalytic CO2 reduction over titanium oxide (TiO2) nanostructured materials, with emphasis on material design and reactor configurations. In this review, we discuss existing and recent TiO2 based supports, encompassing comparative analysis of existing systems, novel designs being employed to improve selectivity and photoconversion rates as well as emerging opportunities for future development, crucial to the field of CO2 photocatalytic reduction. The influence of different operating and morphological variables on the selectivity and efficiency of CO2 photoreduction is reviewed. Finally, perspectives on the progress of TiO2 induced photocatalysis for CO2 photoreduction will be presented.

714 citations

Journal ArticleDOI
TL;DR: This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility.
Abstract: This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), en...

636 citations