scispace - formally typeset
Search or ask a question
Author

Jian-Guo Zheng

Bio: Jian-Guo Zheng is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Thin film & Pulsed laser deposition. The author has an hindex of 25, co-authored 69 publications receiving 2076 citations. Previous affiliations of Jian-Guo Zheng include University of Liverpool & University of Illinois at Chicago.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the growth of boron nanoribbons was observed by pyrolysis of diborane at 630−750 °C and ∼200 mTorr in a quartz tube furnace.
Abstract: Catalyst-free growth of boron nanoribbons was observed by pyrolysis of diborane at 630−750 °C and ∼200 mTorr in a quartz tube furnace. Nanodiffraction analysis indicates the nanoribbons are single crystal α-tetragonal boron. TEM images show the nanoribbon is covered by a 1−2 nm thick amorphous layer. Elemental analysis by EELS, EDX, and XPS shows the nanoribbons consist of boron with small amounts of oxygen and carbon. Infrared and Raman spectra are also reported.

196 citations

Journal ArticleDOI

152 citations

Journal ArticleDOI
24 Jan 2012-ACS Nano
TL;DR: The formation and rupture of conducting filaments induced by oxygen vacancy migration are responsible for the resistive switching behaviors of ZnO resistive memories at the nanoscale.
Abstract: Resistive memory is one of the most promising candidates for next-generation nonvolatile memory technology due to its variety of advantages, such as simple structure and low-power consumption. Bipolar resistive switching behavior was observed in epitaxial ZnO nanoislands with base diameters and heights ranging around 30 and 40 nm, respectively. All four different states (initial, electroformed, ON, and OFF) of the nanoscale resistive memories were measured by conductive atomic force microscopy immediately after the voltage sweeping was performed. Auger electron spectroscopy and other experiments were also carried out to investigate the switching mechanism. The formation and rupture of conducting filaments induced by oxygen vacancy migration are responsible for the resistive switching behaviors of ZnO resistive memories at the nanoscale.

115 citations

Journal ArticleDOI
TL;DR: In this article, the graphite shell-core structures of Fe(C), Co(C) and Fe-Co (C) nanocapsules were demonstrated by means of high-resolution transmission electron microscopy (HRTEM).
Abstract: Shell-core structures of Fe(C), Co(C) and Fe-Co(C) nanocapsules, prepared by an arc discharge process in a mixture of methane and helium, have been demonstrated by means of high-resolution transmission electron microscopy (HRTEM). These nanoscale magnetic cores are protected by graphite shells. It has been found that the zero-field-cooled (ZFC) magnetization of Fe-Co(C) nanocapsules that display different characteristics in three temperature ranges can be well interpreted in terms of the unblocking of magnetization of small single-domain particles and the depinning of large multidomain particles. The saturation magnetization of these nanocapsules decreases monotonically, while the coercivity decreases significantly with increasing temperature.

97 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.5.2.
Abstract: 5.1. Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.1. Cu−Ag 866 5.1.2. Cu−Au 867 5.1.3. Ag−Au 870 5.1.4. Cu−Ag−Au 872 5.2. Nanoalloys of Group 10 (Ni, Pd, Pt) 872 5.2.1. Ni−Pd 872 * To whom correspondence should be addressed. Phone: +39010 3536214. Fax:+39010 311066. E-mail: ferrando@fisica.unige.it. † Universita di Genova. ‡ Argonne National Laboratory. § University of Birmingham. | As of October 1, 2007, Chemical Sciences and Engineering Division. Volume 108, Number 3

3,114 citations

Journal ArticleDOI
18 Dec 2015-Science
TL;DR: At Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling that are consistent with predictions of a highly an isotropic, 2D metal.
Abstract: At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

1,873 citations