scispace - formally typeset
Search or ask a question
Author

Jian Liu

Bio: Jian Liu is an academic researcher from University of British Columbia. The author has contributed to research in topics: Medicine & Catalysis. The author has an hindex of 117, co-authored 2090 publications receiving 73156 citations. Previous affiliations of Jian Liu include Spanish National Research Council & Northwestern University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a route for the controlled synthesis of mesoporous polymer nanospheres, which can be further converted into carbon nanosphere through carbonization, is presented.
Abstract: The controlled synthesis of monodisperse nanospheres faces a number of difficulties, such as extensive crosslinking during hydrothermal processes. Here, the authors show a route for the controlled synthesis of mesoporous polymer nanospheres, which can be further converted into carbon nanospheres through carbonization.

1,542 citations

Journal ArticleDOI
TL;DR: In this article, the potential applications of nanostructured and nanoporous graphitic carbon nitrides (g-C3N4) materials have been developed for a wide range of new applications.
Abstract: Graphitic carbon nitrides (g-C3N4) are becoming increasingly significant due to the theoretical prediction of their unusual properties and promising applications ranging from photocatalysis, heterogeneous catalysis, to fuel cells. Recently, a variety of nanostructured and nanoporous g-C3N4 materials have been developed for a wide range of new applications. This feature article gives, at first, an overview on the synthesis of g-C3N4 nanomaterials with controllable structure and morphology, and secondly, presents and categorizes applications of g-C3N4 as multifunctional metal-free catalysts for environmental protection, energy conversion and storage. A special emphasis is placed on the potential applications of nanostructured g-C3N4 in the areas of artificial photocatalysis for hydrogen production, oxygen reduction reaction (ORR) for fuel cells, and metal-free heterogeneous catalysis. Finally, this perspective highlights crucial issues that should be addressed in the future in the aforementioned exciting research areas.

1,507 citations

Journal ArticleDOI
TL;DR: A practical synthesis method to produce isolated single platinum atoms and clusters using the atomic layer deposition technique and indicates that the partially unoccupied density of states of the platinum atoms' 5d orbitals on the nitrogen-doped graphene are responsible for the excellent performance.
Abstract: Platinum-based catalysts have been considered the most effective electrocatalysts for the hydrogen evolution reaction in water splitting. However, platinum utilization in these electrocatalysts is extremely low, as the active sites are only located on the surface of the catalyst particles. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their efficiency by utilizing nearly all platinum atoms. Here we report on a practical synthesis method to produce isolated single platinum atoms and clusters using the atomic layer deposition technique. The single platinum atom catalysts are investigated for the hydrogen evolution reaction, where they exhibit significantly enhanced catalytic activity (up to 37 times) and high stability in comparison with the state-of-the-art commercial platinum/carbon catalysts. The X-ray absorption fine structure and density functional theory analyses indicate that the partially unoccupied density of states of the platinum atoms’ 5d orbitals on the nitrogen-doped graphene are responsible for the excellent performance. Downsizing platinum based nanocatalysts has the twin advantages of lower platinum usage and increased activity per platinum atom. Here, the authors report an atomic layer deposition technique for single platinum atom catalyst fabrication and assess their hydrogen evolution activity.

1,374 citations

Journal ArticleDOI
TL;DR: Electrochemical data strongly demonstrate that this nanoporous hybrid carbon material integrates the advantageous properties of the individual NC and GC, exhibiting a distinguished specific capacitance calculated from the galvanostatic charge-discharge curves at a current density of 2 A·g(-1).
Abstract: Core–shell structured ZIF-8@ZIF-67 crystals are well-designed and prepared through a seed-mediated growth method. After thermal treatment of ZIF-8@ZIF-67 crystals, we obtain selectively functionalized nanoporous hybrid carbon materials consisting of nitrogen-doped carbon (NC) as the cores and highly graphitic carbon (GC) as the shells. This is the first example of the integration of NC and GC in one particle at the nanometer level. Electrochemical data strongly demonstrate that this nanoporous hybrid carbon material integrates the advantageous properties of the individual NC and GC, exhibiting a distinguished specific capacitance (270 F·g–1) calculated from the galvanostatic charge–discharge curves at a current density of 2 A·g–1. Our study not only bridges diverse carbon-based materials with infinite metal–organic frameworks but also opens a new avenue for artificially designed nanoarchitectures with target functionalities.

1,233 citations

Journal ArticleDOI
TL;DR: Two main challenges of using MOFs in CO(2) capture, the cost of synthesis and the stability toward water vapor, have been analyzed and possible solutions and path forward have been proposed to address the two challenges.
Abstract: Metal–organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, large surface areas, and potential applications as novel adsorbents The recent progress in adsorption-based CO2 capture by MOFs is reviewed and summarized in this critical review CO2 adsorption in MOFs has been divided into two sections, adsorption at high pressures and selective adsorption at approximate atmospheric pressures Keys to CO2 adsorption in MOFs at high pressures and low pressures are summarized to be pore volumes of MOFs, and heats of adsorption, respectively Many MOFs have high CO2 selectivities over N2 and CH4 Water effects on CO2 adsorption in MOFs are presented and compared with benchmark zeolites In addition, strategies appeared in the literature to enhance CO2 adsorption capacities and/or selectivities in MOFs have been summarized into three main categories, catenation and interpenetration, chemical bonding enhancement, and electrostatic force involvement Besides the advantages, two main challenges of using MOFs in CO2 capture, the cost of synthesis and the stability toward water vapor, have been analyzed and possible solutions and path forward have been proposed to address the two challenges as well (150 references)

1,150 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations