scispace - formally typeset
Search or ask a question
Author

Jian Sun

Bio: Jian Sun is an academic researcher from Xi'an Jiaotong University. The author has contributed to research in topics: Object detection & Computer science. The author has an hindex of 109, co-authored 360 publications receiving 239387 citations. Previous affiliations of Jian Sun include French Institute for Research in Computer Science and Automation & Tsinghua University.


Papers
More filters
Posted Content
TL;DR: An extremely computation-efficient CNN architecture named ShuffleNet is introduced, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs), to greatly reduce computation cost while maintaining accuracy.
Abstract: We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet on ImageNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ~13x actual speedup over AlexNet while maintaining comparable accuracy.

1,645 citations

Journal ArticleDOI
15 Jul 2009
TL;DR: The Heat Kernel Signature, called the HKS, is obtained by restricting the well‐known heat kernel to the temporal domain and shows that under certain mild assumptions, HKS captures all of the information contained in the heat kernel, and characterizes the shape up to isometry.
Abstract: We propose a novel point signature based on the properties of the heat diffusion process on a shape. Our signature, called the Heat Kernel Signature (or HKS), is obtained by restricting the well-known heat kernel to the temporal domain. Remarkably we show that under certain mild assumptions, HKS captures all of the information contained in the heat kernel, and characterizes the shape up to isometry. This means that the restriction to the temporal domain, on the one hand, makes HKS much more concise and easily commensurable, while on the other hand, it preserves all of the information about the intrinsic geometry of the shape. In addition, HKS inherits many useful properties from the heat kernel, which means, in particular, that it is stable under perturbations of the shape. Our signature also provides a natural and efficiently computable multi-scale way to capture information about neighborhoods of a given point, which can be extremely useful in many applications. To demonstrate the practical relevance of our signature, we present several methods for non-rigid multi-scale matching based on the HKS and use it to detect repeated structure within the same shape and across a collection of shapes.

1,546 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: This work proposes a robust background measure, called boundary connectivity, which characterizes the spatial layout of image regions with respect to image boundaries and is much more robust and presents unique benefits that are absent in previous saliency measures.
Abstract: Recent progresses in salient object detection have exploited the boundary prior, or background information, to assist other saliency cues such as contrast, achieving state-of-the-art results. However, their usage of boundary prior is very simple, fragile, and the integration with other cues is mostly heuristic. In this work, we present new methods to address these issues. First, we propose a robust background measure, called boundary connectivity. It characterizes the spatial layout of image regions with respect to image boundaries and is much more robust. It has an intuitive geometrical interpretation and presents unique benefits that are absent in previous saliency measures. Second, we propose a principled optimization framework to integrate multiple low level cues, including our background measure, to obtain clean and uniform saliency maps. Our formulation is intuitive, efficient and achieves state-of-the-art results on several benchmark datasets.

1,321 citations

Journal ArticleDOI
TL;DR: This paper formulate the stereo matching problem as a Markov network and solve it using Bayesian belief propagation to obtain the maximum a posteriori (MAP) estimation in the Markovnetwork.
Abstract: In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for depth/disparity, a line process for depth discontinuity, and a binary process for occlusion. After eliminating the line process and the binary process by introducing two robust functions, we apply the belief propagation algorithm to obtain the maximum a posteriori (MAP) estimation in the Markov network. Other low-level visual cues (e.g., image segmentation) can also be easily incorporated in our stereo model to obtain better stereo results. Experiments demonstrate that our methods are comparable to the state-of-the-art stereo algorithms for many test cases.

1,272 citations

Proceedings ArticleDOI
Kaiming He1, Jian Sun1
07 Jun 2015
TL;DR: This paper investigates the accuracy of CNNs under constrained time cost, and presents an architecture that achieves very competitive accuracy in the ImageNet dataset, yet is 20% faster than “AlexNet” [14] (16.0% top-5 error, 10-view test).
Abstract: Though recent advanced convolutional neural networks (CNNs) have been improving the image recognition accuracy, the models are getting more complex and time-consuming. For real-world applications in industrial and commercial scenarios, engineers and developers are often faced with the requirement of constrained time budget. In this paper, we investigate the accuracy of CNNs under constrained time cost. Under this constraint, the designs of the network architectures should exhibit as trade-offs among the factors like depth, numbers of filters, filter sizes, etc. With a series of controlled comparisons, we progressively modify a baseline model while preserving its time complexity. This is also helpful for understanding the importance of the factors in network designs. We present an architecture that achieves very competitive accuracy in the ImageNet dataset (11.8% top-5 error, 10-view test), yet is 20% faster than “AlexNet” [14] (16.0% top-5 error, 10-view test).

1,259 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations