scispace - formally typeset
Search or ask a question
Author

Jianbin Gao

Bio: Jianbin Gao is an academic researcher from University of Electronic Science and Technology of China. The author has contributed to research in topics: Computer science & Cloud computing. The author has an hindex of 9, co-authored 37 publications receiving 884 citations. Previous affiliations of Jianbin Gao include Joint Institute for Nuclear Research.

Papers
More filters
Journal ArticleDOI
TL;DR: The proposed MeDShare system is blockchain-based and provides data provenance, auditing, and control for shared medical data in cloud repositories among big data entities and employs smart contracts and an access control mechanism to effectively track the behavior of the data.
Abstract: The dissemination of patients’ medical records results in diverse risks to patients’ privacy as malicious activities on these records cause severe damage to the reputation, finances, and so on of all parties related directly or indirectly to the data. Current methods to effectively manage and protect medical records have been proved to be insufficient. In this paper, we propose MeDShare, a system that addresses the issue of medical data sharing among medical big data custodians in a trust-less environment. The system is blockchain-based and provides data provenance, auditing, and control for shared medical data in cloud repositories among big data entities. MeDShare monitors entities that access data for malicious use from a data custodian system. In MeDShare, data transitions and sharing from one entity to the other, along with all actions performed on the MeDShare system, are recorded in a tamper-proof manner. The design employs smart contracts and an access control mechanism to effectively track the behavior of the data and revoke access to offending entities on detection of violation of permissions on data. The performance of MeDShare is comparable to current cutting edge solutions to data sharing among cloud service providers. By implementing MeDShare, cloud service providers and other data guardians will be able to achieve data provenance and auditing while sharing medical data with entities such as research and medical institutions with minimal risk to data privacy.

819 citations

Journal ArticleDOI
TL;DR: The sovereign blockchain technology, which provides transparency and provenance, is utilized in this paper to mitigate these above mentioned problems and proves very efficient as the user can monitor how the electricity is used, and it also provides a platform where there is no manipulation from either party.
Abstract: Electricity is the commonest commodity for most businesses in our world today. The use of electricity has been a breakthrough for the discovery of new technologies and has become the main driving force behind several innovations. With the introduction of smart grid systems, there have been improvements in how utility companies interact with their customers with regards to electricity use. However, since the readings are done via the Internet, there is the tendency for the data to be compromised when it gets into the hands of the wrong people. Moreover, customers mostly do not know why they pay huge amounts and which appliances use more electricity, since they are not privy to the readings. The sovereign blockchain technology, which provides transparency and provenance, is utilized in this paper to mitigate these above mentioned problems. A smart contract, which executes laid down procedures to provide a trust-based system between participants on the network is also implemented. Our system proves very efficient as the user can monitor how the electricity is used, and it also provides a platform where there is no manipulation from either party.

167 citations

Journal ArticleDOI
TL;DR: This article analyzes the combination of blockchain and SDN for the effective operation of the VANET systems in 5G and fog computing paradigms and substantially guarantees an efficient network performance, while also ensuring that there is trust among the entities.
Abstract: The goal of intelligent transport systems (ITSs) is to enhance the network performance of vehicular ad hoc networks (VANETs). Even though it presents new opportunities to the Internet of Vehicles (IoV) environment, there are some security concerns including the need to establish trust among the connected peers. The fifth-generation (5G) communication system, which provides reliable and low-latency communication services, is seen as the technology to cater for the challenges in VANETs. The incorporation of software-defined networks (SDNs) also ensures an effective network management. However, there should be monitoring and reporting services provided in the IoV. Blockchain, which has decentralization, transparency, and immutability as some of its properties, is designed to ensure trust in networking platforms. In that regard, this article analyzes the combination of blockchain and SDN for the effective operation of the VANET systems in 5G and fog computing paradigms. With managerial responsibilities shared between the blockchain and the SDN, it helps to relieve the pressure off the controller due to the ubiquitous processing that occurs. A trust-based model that curbs malicious activities in the network is also presented. The simulation results substantially guarantee an efficient network performance, while also ensuring that there is trust among the entities.

146 citations

Proceedings ArticleDOI
01 Sep 2018
TL;DR: This work presents a blockchain-supported architectural framework for secure control of personal data in a health information exchange by pairing user-generated acceptable use policies with smart contracts and introduces minimal risk to data by architecting a mechanism for controlling data after sharing.
Abstract: Health information exchanges have been popular for some time with their advantages known and widely researched. In spite of their utility in increasing provider efficiency and decreasing administrative costs, one challenge that has persisted is the data owners inability to control data after transmission. The lack of technical mechanisms to effectively control patients’ health data in the network significantly affects participation of health and medical institutions while perpetrating the silo-based data management that locks value and potential inherent in the data. This not only affects researchers due to the lack of data for research and analysis but the quality of life of patients.We present a blockchain-supported architectural framework for secure control of personal data in a health information exchange by pairing user-generated acceptable use policies with smart contracts. We highlight the merits of our system, its user-centric focus and also show experimental results along with directions for extending our work. The framework introduces minimal risk to data by architecting a mechanism for controlling data after sharing. In adopting our framework, health service providers can deliver a stronger assurance for data management than is possible with current systems.

55 citations

Journal ArticleDOI
TL;DR: A novel landmark matching formulation is proposed by enforcing sparsity in the correspondence matrix and offer its solutions based on linear programming and a set of reinforced self-similarities descriptors which can better characterize local photometric and geometric properties of the retinal image.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive classification of blockchain-enabled applications across diverse sectors such as supply chain, business, healthcare, IoT, privacy, and data management is presented, and key themes, trends and emerging areas for research are established.

1,310 citations

Journal Article
GU Si-yang1
TL;DR: A privacy preserving association rule mining algorithm was introduced that preserved privacy of individual values by computing scalar product and the security was analyzed.
Abstract: A privacy preserving association rule mining algorithm was introducedThis algorithm preserved privacy of individual values by computing scalar productMeanwhile the algorithm of computing scalar product was given and the security was analyzed

658 citations

01 Jan 2013
TL;DR: Four rationales for sharing data are examined, drawing examples from the sciences, social sciences, and humanities: to reproduce or to verify research, to make results of publicly funded research available to the public, to enable others to ask new questions of extant data, and to advance the state of research and innovation.
Abstract: We must all accept that science is data and that data are science, and thus provide for, and justify the need for the support of, much-improved data curation. (Hanson, Sugden, & Alberts) Researchers are producing an unprecedented deluge of data by using new methods and instrumentation. Others may wish to mine these data for new discoveries and innovations. However, research data are not readily available as sharing is common in only a few fields such as astronomy and genomics. Data sharing practices in other fields vary widely. Moreover, research data take many forms, are handled in many ways, using many approaches, and often are difficult to interpret once removed from their initial context. Data sharing is thus a conundrum. Four rationales for sharing data are examined, drawing examples from the sciences, social sciences, and humanities: (1) to reproduce or to verify research, (2) to make results of publicly funded research available to the public, (3) to enable others to ask new questions of extant data, and (4) to advance the state of research and innovation. These rationales differ by the arguments for sharing, by beneficiaries, and by the motivations and incentives of the many stakeholders involved. The challenges are to understand which data might be shared, by whom, with whom, under what conditions, why, and to what effects. Answers will inform data policy and practice. © 2012 Wiley Periodicals, Inc.

634 citations

Journal ArticleDOI
TL;DR: The operating mechanism and mainstream platforms of blockchain-enabled smart contracts are introduced, and a research framework for smart contracts based on a novel six-layer architecture is proposed.
Abstract: In recent years, the rapid development of cryptocurrencies and their underlying blockchain technology has revived Szabo’s original idea of smart contracts, i.e., computer protocols that are designed to automatically facilitate, verify, and enforce the negotiation and implementation of digital contracts without central authorities. Smart contracts can find a wide spectrum of potential application scenarios in the digital economy and intelligent industries, including financial services, management, healthcare, and Internet of Things, among others, and also have been integrated into the mainstream blockchain-based development platforms, such as Ethereum and Hyperledger. However, smart contracts are still far from mature, and major technical challenges such as security and privacy issues are still awaiting further research efforts. For instance, the most notorious case might be “The DAO Attack” in June 2016, which led to more than $50 million Ether transferred into an adversary’s account. In this paper, we strive to present a systematic and comprehensive overview of blockchain-enabled smart contracts, aiming at stimulating further research toward this emerging research area. We first introduced the operating mechanism and mainstream platforms of blockchain-enabled smart contracts, and proposed a research framework for smart contracts based on a novel six-layer architecture. Second, both the technical and legal challenges, as well as the recent research progresses, are listed. Third, we presented several typical application scenarios. Toward the end, we discussed the future development trends of smart contracts. This paper is aimed at providing helpful guidance and reference for future research efforts.

589 citations