scispace - formally typeset
Search or ask a question
Author

Jianchang Mao

Other affiliations: Michigan State University, Hewlett-Packard, Yahoo!  ...read more
Bio: Jianchang Mao is an academic researcher from Microsoft. The author has contributed to research in topics: Online advertising & Deep learning. The author has an hindex of 41, co-authored 102 publications receiving 17707 citations. Previous affiliations of Jianchang Mao include Michigan State University & Hewlett-Packard.


Papers
More filters
Journal ArticleDOI
TL;DR: The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
Abstract: The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

6,527 citations

Journal ArticleDOI
01 Mar 1996
TL;DR: The article discusses the motivations behind the development of ANNs and describes the basic biological neuron and the artificial computational model, and outlines network architectures and learning processes, and presents some of the most commonly used ANN models.
Abstract: Artificial neural nets (ANNs) are massively parallel systems with large numbers of interconnected simple processors. The article discusses the motivations behind the development of ANNs and describes the basic biological neuron and the artificial computational model. It outlines network architectures and learning processes, and presents some of the most commonly used ANN models. It concludes with character recognition, a successful ANN application.

4,281 citations

Journal ArticleDOI
TL;DR: It is demonstrated that integrating the information extracted from multiresolution SAR models gives much better performance than single resolution methods in both texture classification and texture segmentation.

762 citations

Journal ArticleDOI
TL;DR: The SAMANN network offers the generalization ability of projecting new data, which is not present in the original Sammon's projection algorithm; the NDA method and NP-SOM network provide new powerful approaches for visualizing high dimensional data.
Abstract: Classical feature extraction and data projection methods have been well studied in the pattern recognition and exploratory data analysis literature. We propose a number of networks and learning algorithms which provide new or alternative tools for feature extraction and data projection. These networks include a network (SAMANN) for J.W. Sammon's (1969) nonlinear projection, a linear discriminant analysis (LDA) network, a nonlinear discriminant analysis (NDA) network, and a network for nonlinear projection (NP-SOM) based on Kohonen's self-organizing map. A common attribute of these networks is that they all employ adaptive learning algorithms which makes them suitable in some environments where the distribution of patterns in feature space changes with respect to time. The availability of these networks also facilitates hardware implementation of well-known classical feature extraction and projection approaches. Moreover, the SAMANN network offers the generalization ability of projecting new data, which is not present in the original Sammon's projection algorithm; the NDA method and NP-SOM network provide new powerful approaches for visualizing high dimensional data. We evaluate five representative neural networks for feature extraction and data projection based on a visual judgement of the two-dimensional projection maps and three quantitative criteria on eight data sets with various properties. >

695 citations

Patent
15 Mar 2005
TL;DR: In this paper, a trust network is defined for each user, and annotations by any member of a first user's trust network are made visible to the first user during search and/or browsing of the corpus.
Abstract: Computer systems and methods incorporate user annotations (metadata) regarding various pages or sites, including annotations by a querying user and by members of a trust network defined for the querying user into search and browsing of a corpus such as the World Wide Web. A trust network is defined for each user, and annotations by any member of a first user's trust network are made visible to the first user during search and/or browsing of the corpus. Users can also limit searches to content annotated by members of their trust networks or by members of a community selected by the user.

487 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A generalized gray-scale and rotation invariant operator presentation that allows for detecting the "uniform" patterns for any quantization of the angular space and for any spatial resolution and presents a method for combining multiple operators for multiresolution analysis.
Abstract: Presents a theoretically very simple, yet efficient, multiresolution approach to gray-scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain local binary patterns, termed "uniform," are fundamental properties of local image texture and their occurrence histogram is proven to be a very powerful texture feature. We derive a generalized gray-scale and rotation invariant operator presentation that allows for detecting the "uniform" patterns for any quantization of the angular space and for any spatial resolution and presents a method for combining multiple operators for multiresolution analysis. The proposed approach is very robust in terms of gray-scale variations since the operator is, by definition, invariant against any monotonic transformation of the gray scale. Another advantage is computational simplicity as the operator can be realized with a few operations in a small neighborhood and a lookup table. Experimental results demonstrate that good discrimination can be achieved with the occurrence statistics of simple rotation invariant local binary patterns.

14,245 citations

Journal ArticleDOI
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

14,054 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: It is proved the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density.
Abstract: A general non-parametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure: the mean shift. For discrete data, we prove the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-Watson estimator from kernel regression and the robust M-estimators; of location is also established. Algorithms for two low-level vision tasks discontinuity-preserving smoothing and image segmentation - are described as applications. In these algorithms, the only user-set parameter is the resolution of the analysis, and either gray-level or color images are accepted as input. Extensive experimental results illustrate their excellent performance.

11,727 citations

Journal ArticleDOI
TL;DR: A new method for performing a nonlinear form of principal component analysis by the use of integral operator kernel functions is proposed and experimental results on polynomial feature extraction for pattern recognition are presented.
Abstract: A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map—for instance, the space of all possible five-pixel products in 16 × 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.

8,175 citations