scispace - formally typeset
Search or ask a question
Author

Jiandong Wu

Other affiliations: Chinese Academy of Sciences
Bio: Jiandong Wu is an academic researcher from University of Manitoba. The author has contributed to research in topics: Chemotaxis & Cell migration. The author has an hindex of 14, co-authored 33 publications receiving 585 citations. Previous affiliations of Jiandong Wu include Chinese Academy of Sciences.

Papers
More filters
Journal ArticleDOI
TL;DR: Recent developments in microfluidic-based chemotaxis studies are reviewed and the new trends in this field observed over the past few years are discussed.
Abstract: Microfluidic devices can better control cellular microenvironments compared to conventional cell migration assays. Over the past few years, microfluidics-based chemotaxis studies showed a rapid growth. New strategies were developed to explore cell migration in manipulated chemical gradients. In addition to expanding the use of microfluidic devices for a broader range of cell types, microfluidic devices were used to study cell migration and chemotaxis in complex environments. Furthermore, high-throughput microfluidic chemotaxis devices and integrated microfluidic chemotaxis systems were developed for medical and commercial applications. In this article, we review recent developments in microfluidics-based chemotaxis studies and discuss the new trends in this field observed over the past few years.

144 citations

Journal ArticleDOI
11 Apr 2018
TL;DR: The recent developments of this area with the focus on chronic respiratory diseases (CRD), diabetes, and chronic kidney diseases (CKD) are reviewed, discussing the challenges, opportunities, and future perspectives of this field.
Abstract: Various types of chronic diseases (CD) are the leading causes of disability and death worldwide. While those diseases are chronic in nature, accurate and timely clinical decision making is critically required. Current diagnosis procedures are often lengthy and costly, which present a major bottleneck for effective CD healthcare. Rapid, reliable and low-cost diagnostic tools at point-of-care (PoC) are therefore on high demand. Owing to miniaturization, lab-on-chip (LoC) technology has high potential to enable improved biomedical applications in terms of low-cost, high-throughput, ease-of-operation and analysis. In this direction, research toward developing new LoC-based PoC systems for CD diagnosis is fast growing into an emerging area. Some studies in this area began to incorporate digital and mobile technologies. Here we review the recent developments of this area with the focus on chronic respiratory diseases (CRD), diabetes, and chronic kidney diseases (CKD). We conclude by discussing the challenges, opportunities and future perspectives of this field.

96 citations

Journal ArticleDOI
Jie Li1, Rachel Nickel1, Jiandong Wu1, Francis Lin1, Johan van Lierop1, Song Liu1 
TL;DR: This work uses magnetic iron oxide nanoparticles (MNPs) in combination with magnetic fields to damage the biofilm matrix and cause detachment, achieving up to a nearly 5 log10 reduction in biofilm bacteria after treatment with 30 mg mL-1 of 11 nm MNPs using a magnetic field.
Abstract: A main feature of biofilms is the self-produced extracellular polymeric substances (EPSs) that act as a protective shield, preventing biocide penetration. We use magnetic iron oxide nanoparticles (MNPs) in combination with magnetic fields to damage the biofilm matrix and cause detachment. A Methicillin-resistant Staphylococcus aureus (MRSA) biofilm strain is used to demonstrate the efficacy of the methodology with different sizes and concentrations of MNPs under AC and DC applied field conditions. We achieve up to a nearly 5 log10 reduction in biofilm bacteria after treatment with 30 mg mL-1 of 11 nm MNPs using a magnetic field. The MNPs cause significant mechanical disruption to the matrix and lead to biofilm dispersal. In addition, using magnetic hyperthermia further affects biofilm damage.

63 citations

Journal ArticleDOI
17 Dec 2017-Sensors
TL;DR: A mini-review focusing on recent development of LoC-based methods for CVD and cancer diagnostic biomarker measurements, and the perspectives of the challenges, opportunities and future directions are provided.
Abstract: Cardiovascular disease (CVD) and cancer are two leading causes of death worldwide. CVD and cancer share risk factors such as obesity and diabetes mellitus and have common diagnostic biomarkers such as interleukin-6 and C-reactive protein. Thus, timely and accurate diagnosis of these two correlated diseases is of high interest to both the research and healthcare communities. Most conventional methods for CVD and cancer biomarker detection such as microwell plate-based immunoassay and polymerase chain reaction often suffer from high costs, low test speeds, and complicated procedures. Recently, lab-on-a-chip (LoC)-based platforms have been increasingly developed for CVD and cancer biomarker sensing and analysis using various molecular and cell-based diagnostic biomarkers. These new platforms not only enable better sample preparation, chemical manipulation and reaction, high-throughput and portability, but also provide attractive features such as label-free detection and improved sensitivity due to the integration of various novel detection techniques. These features effectively improve the diagnostic test speed and simplify the detection procedure. In addition, microfluidic cell assays and organ-on-chip models offer new potential approaches for CVD and cancer diagnosis. Here we provide a mini-review focusing on recent development of LoC-based methods for CVD and cancer diagnostic biomarker measurements, and our perspectives of the challenges, opportunities and future directions.

59 citations

Journal ArticleDOI
26 Mar 2017-Sensors
TL;DR: This CRP-Chip with attractive features of low-cost, fast test speed, and integrated easy operation with smartphones has the potential to enable future clinical PoC chronic disease diagnosis and risk stratification by parallel measurements of a panel of protein biomarkers.
Abstract: Traditional diagnostic tests for chronic diseases are expensive and require a specialized laboratory, therefore limiting their use for point-of-care (PoC) testing. To address this gap, we developed a method for rapid and low-cost C-reactive protein (CRP) detection from blood by integrating a paper-based microfluidic immunoassay with a smartphone (CRP-Chip). We chose CRP for this initial development because it is a strong biomarker of prognosis in chronic heart and kidney disease. The microfluidic immunoassay is realized by lateral flow and gold nanoparticle-based colorimetric detection of the target protein. The test image signal is acquired and analyzed using a commercial smartphone with an attached microlens and a 3D-printed chip–phone interface. The CRP-Chip was validated for detecting CRP in blood samples from chronic kidney disease patients and healthy subjects. The linear detection range of the CRP-Chip is up to 2 μg/mL and the detection limit is 54 ng/mL. The CRP-Chip test result yields high reproducibility and is consistent with the standard ELISA kit. A single CRP-Chip can perform the test in triplicate on a single chip within 15 min for less than 50 US cents of material cost. This CRP-Chip with attractive features of low-cost, fast test speed, and integrated easy operation with smartphones has the potential to enable future clinical PoC chronic disease diagnosis and risk stratification by parallel measurements of a panel of protein biomarkers.

42 citations


Cited by
More filters
Journal Article
TL;DR: A new book enPDFd preventing chronic diseases a vital investment to read is offered, offering you a new book to read and helping you to love reading.
Abstract: Let's read! We will often find out this sentence everywhere. When still being a kid, mom used to order us to always read, so did the teacher. Some books are fully read in a week and we need the obligation to support reading. What about now? Do you still love reading? Is reading only for you who have obligation? Absolutely not! We here offer you a new book enPDFd preventing chronic diseases a vital investment to read.

1,432 citations

Journal ArticleDOI
TL;DR: The mechanisms by which nanomaterials can be used to target antibiotic-resistant bacterial infections are discussed, design elements and properties of nanomMaterials that can be engineered to enhance potency are highlighted, and recent progress and remaining challenges for clinical implementation are explored.
Abstract: Antibiotic-resistant bacterial infections arising from acquired resistance and/or through biofilm formation necessitate the development of innovative 'outside of the box' therapeutics Nanomaterial-based therapies are promising tools to combat bacterial infections that are difficult to treat, featuring the capacity to evade existing mechanisms associated with acquired drug resistance In addition, the unique size and physical properties of nanomaterials give them the capability to target biofilms, overcoming recalcitrant infections In this Review, we highlight the general mechanisms by which nanomaterials can be used to target bacterial infections associated with acquired antibiotic resistance and biofilms We emphasize design elements and properties of nanomaterials that can be engineered to enhance potency Lastly, we present recent progress and remaining challenges for widespread clinical implementation of nanomaterials as antimicrobial therapeutics

418 citations

Journal ArticleDOI
TL;DR: This work reviews mechanochemical and electrical inputs and multiparameter signal integration underlying collective guidance, decision making, and outcome of collective cell migration.

354 citations

Journal ArticleDOI
TL;DR: Recent advances in wearable and implantable devices based on flexible and stretchable electronics for cardiovascular monitoring and therapy and device‐assisted tissue engineering therapy is discussed.
Abstract: Cardiovascular disease is the leading cause of death and has dramatically increased in recent years. Continuous cardiac monitoring is particularly important for early diagnosis and prevention, and flexible and stretchable electronic devices have emerged as effective tools for this purpose. Their thin, soft, and deformable features allow intimate and long-term integration with biotissues, which enables continuous, high-fidelity, and sometimes large-area cardiac monitoring on the skin and/or heart surface. In addition to monitoring, intimate contact is also crucial for high-precision therapies. Combined with tissue engineering, soft bioelectronics have also demonstrated the capability to repair damaged cardiac tissues. This review highlights the recent advances in wearable and implantable devices based on flexible and stretchable electronics for cardiovascular monitoring and therapy. First, wearable/implantable soft bioelectronics for cardiovascular monitoring (e.g., the electrocardiogram, blood pressure, and oxygen saturation level) are reviewed. Then, advances in cardiovascular therapy based on soft bioelectronics (e.g., mesh pacing, ablation, robotic sleeves, and electronic stents) are discussed. Finally, device-assisted tissue engineering therapy (e.g., functional electronic scaffolds and in vitro cardiac platforms) is discussed.

287 citations

Journal ArticleDOI
TL;DR: Next generation techniques relying on high sensitivity, specificity, lower consumption of precious reagents, suggest that rapid generation of results can be achieved via optical based detection of bacterial cells.

264 citations