scispace - formally typeset
Search or ask a question
Author

Jianfang Zhou

Bio: Jianfang Zhou is an academic researcher from Chinese Center for Disease Control and Prevention. The author has contributed to research in topics: Virus & Influenza A virus. The author has an hindex of 21, co-authored 56 publications receiving 1673 citations. Previous affiliations of Jianfang Zhou include National Health and Family Planning Commission.


Papers
More filters
Journal ArticleDOI
TL;DR: The first human infection with a novel reassortant avian influenza A H10N8 virus is reported, which was isolated from a patient from Nanchang City, China and caused human infection and could have been associated with the death of a patient.

508 citations

Journal ArticleDOI
TL;DR: It is suggested that influenza A virus may provide favorable conditions for viral protein accumulation and virus production by inducing a G0/G1-phase cell cycle arrest in infected cells.
Abstract: Many viruses interact with the host cell division cycle to favor their own growth. In this study, we examined the ability of influenza A virus to manipulate cell cycle progression. Our results show that influenza A virus A/WSN/33 (H1N1) replication results in G0/G1-phase accumulation of infected cells and that this accumulation is caused by the prevention of cell cycle entry from G0/G1 phase into S phase. Consistent with the G0/G1-phase accumulation, the amount of hyperphosphorylated retinoblastoma protein, a necessary active form for cell cycle progression through late G1 into S phase, decreased after infection with A/WSN/33 (H1N1) virus. In addition, other key molecules in the regulation of the cell cycle, such as p21, cyclin E, and cyclin D1, were also changed and showed a pattern of G0/G1-phase cell cycle arrest. It is interesting that increased viral protein expression and progeny virus production in cells synchronized in the G0/G1 phase were observed compared to those in either unsynchronized cells or cells synchronized in the G2/M phase. G0/G1-phase cell cycle arrest is likely a common strategy, since the effect was also observed in other strains, such as H3N2, H9N2, PR8 H1N1, and pandemic swine H1N1 viruses. These findings, in all, suggest that influenza A virus may provide favorable conditions for viral protein accumulation and virus production by inducing a G0/G1-phase cell cycle arrest in infected cells.

120 citations

Journal ArticleDOI
TL;DR: The insertion of four amino acids at the haemagglutinin cleavage site enabled trypsin-independent infectivity of this virus and the neuraminidase substitution R292K conferred a multidrug resistance phenotype.
Abstract: With no or low virulence in poultry, avian influenza A(H7N9) virus has caused severe infections in humans. In the current fifth epidemic wave, a highly pathogenic avian influenza (HPAI) H7N9 virus emerged. The insertion of four amino acids (KRTA) at the haemagglutinin (HA) cleavage site enabled trypsin-independent infectivity of this virus. Although maintaining dual receptor-binding preference, its HA antigenicity was distinct from low-pathogenic avian influenza A(H7N9). The neuraminidase substitution R292K conferred a multidrug resistance phenotype.

95 citations

Journal ArticleDOI
TL;DR: Both sources in the Yangtze River Delta region and the Pearl RiverDelta region have been established and found to be responsible for the H7N9 outbreaks in mainland China, posing a long-term threat of H7n9 infection in humans.
Abstract: Due to enzootic infections in poultry and persistent human infections in China, influenza A (H7N9) virus has remained a public health threat. The Yangtze River Delta region, which is located in eastern China, is well recognized as the original source for H7N9 outbreaks. Based on the evolutionary analysis of H7N9 viruses from all three outbreak waves since 2013, we identified the Pearl River Delta region as an additional H7N9 outbreak source. H7N9 viruses are repeatedly introduced from these two sources to the other areas, and the persistent circulation of H7N9 viruses occurs in poultry, causing continuous outbreak waves. Poultry movements may contribute to the geographic expansion of the virus. In addition, the AnH1 genotype, which was predominant during wave 1, was replaced by JS537, JS18828, and AnH1887 genotypes during waves 2 and 3. The establishment of a new source and the continuous evolution of the virus hamper the elimination of H7N9 viruses, thus posing a long-term threat of H7N9 infection in humans. Therefore, both surveillance of H7N9 viruses in humans and poultry and supervision of poultry movements should be strengthened. IMPORTANCE Since its occurrence in humans in eastern China in spring 2013, the avian H7N9 viruses have been demonstrating the continuing pandemic threat posed by the current influenza ecosystem in China. As the viruses are silently circulated in poultry, with potentially severe outcomes in humans, H7N9 virus activity in humans in China is very important to understand. In this study, we identified a newly emerged H7N9 outbreak source in the Pearl River Delta region. Both sources in the Yangtze River Delta region and the Pearl River Delta region have been established and found to be responsible for the H7N9 outbreaks in mainland China.

87 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans.

9,474 citations

Journal ArticleDOI
26 May 2020-Nature
TL;DR: In a study of antibodies isolated from patients infected with SARS-CoV-2, antibodies that potently neutralized the virus competed with angiotensin-converting enzyme 2 for binding to the receptor-binding domain of the viral spike protein, suggesting that antibodies that disrupt this interaction could be developed to treat Sars-Cov-2 infection.
Abstract: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a global health emergency that is in urgent need of intervention1-3. The entry of SARS-CoV-2 into its target cells depends on binding between the receptor-binding domain (RBD) of the viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2)2,4-6. Here we report the isolation and characterization of 206 RBD-specific monoclonal antibodies derived from single B cells from 8 individuals infected with SARS-CoV-2. We identified antibodies that potently neutralize SARS-CoV-2; this activity correlates with competition with ACE2 for binding to RBD. Unexpectedly, the anti-SARS-CoV-2 antibodies and the infected plasma did not cross-react with the RBDs of SARS-CoV or Middle East respiratory syndrome-related coronavirus (MERS-CoV), although there was substantial plasma cross-reactivity to their trimeric spike proteins. Analysis of the crystal structure of RBD-bound antibody revealed that steric hindrance inhibits viral engagement with ACE2, thereby blocking viral entry. These findings suggest that anti-RBD antibodies are largely viral-species-specific inhibitors. The antibodies identified here may be candidates for development of clinical interventions against SARS-CoV-2.

1,438 citations

Journal ArticleDOI
TL;DR: An update on CoV infections and relevant diseases, particularly the host defense against CoV‐induced inflammation of lung tissue, as well as the role of the innate immune system in the pathogenesis and clinical treatment is provided.
Abstract: Coronaviruses (CoVs) are by far the largest group of known positive-sense RNA viruses having an extensive range of natural hosts. In the past few decades, newly evolved Coronaviruses have posed a global threat to public health. The immune response is essential to control and eliminate CoV infections, however, maladjusted immune responses may result in immunopathology and impaired pulmonary gas exchange. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune systems of the hosts may shed light on the development and persistence of inflammation in the lungs and hopefully can reduce the risk of lung inflammation caused by CoVs. In this review, we provide an update on CoV infections and relevant diseases, particularly the host defense against CoV-induced inflammation of lung tissue, as well as the role of the innate immune system in the pathogenesis and clinical treatment.

1,416 citations

Journal ArticleDOI
15 Jul 2020-Nature
TL;DR: An analysis identifies human monoclonal antibodies that potently neutralize wild-type SARS-CoV-2 and protect animals from disease, including two that synergize in a cocktail, suggesting that these could be candidates for use as therapeutic agents for the treatment of COVID-19 in humans.
Abstract: The ongoing pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health1 and the medical countermeasures available so far are limited2,3. Moreover, we currently lack a thorough understanding of the mechanisms of humoral immunity to SARS-CoV-24. Here we analyse a large panel of human monoclonal antibodies that target the spike (S) glycoprotein5, and identify several that exhibit potent neutralizing activity and fully block the receptor-binding domain of the S protein (SRBD) from interacting with human angiotensin-converting enzyme 2 (ACE2). Using competition-binding, structural and functional studies, we show that the monoclonal antibodies can be clustered into classes that recognize distinct epitopes on the SRBD, as well as distinct conformational states of the S trimer. Two potently neutralizing monoclonal antibodies, COV2-2196 and COV2-2130, which recognize non-overlapping sites, bound simultaneously to the S protein and neutralized wild-type SARS-CoV-2 virus in a synergistic manner. In two mouse models of SARS-CoV-2 infection, passive transfer of COV2-2196, COV2-2130 or a combination of both of these antibodies protected mice from weight loss and reduced the viral burden and levels of inflammation in the lungs. In addition, passive transfer of either of two of the most potent ACE2-blocking monoclonal antibodies (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on the SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic agents. An analysis identifies human monoclonal antibodies that potently neutralize wild-type SARS-CoV-2 and protect animals from disease, including two that synergize in a cocktail, suggesting that these could be candidates for use as therapeutic agents for the treatment of COVID-19 in humans.

880 citations