scispace - formally typeset
Search or ask a question
Author

蒋志刚

Bio: 蒋志刚 is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 345 citations.

Papers
More filters
01 Jan 2003
TL;DR: It’s time to dust off the shovels and start cleaning up the house.
Abstract: 宏生态学是生态学与其他宏观学科不断交叉和融合后的产物.它以个体、种群和物种的生态特征在大时空尺度上的格局和变化规律为主要研究内容,它比其他生态学更强调归纳和推论,也更依赖数据的积累.近年来,宏生态学在对物种-面积关系进行探讨的基础上,对生物类群间的物种数量的协同变化以及物种和高级分类单元间的关系等进行了新的研究;宏生态学试图将有机论和个体论结合来探讨和总结群落结构中的物种组成规律;并对物种多度和分布格局间的关系从生态位和异质种群角度进行新的解释;个体大小频次分布规律是宏生态学一重要内容,对其深入研究和探讨已与物种多度、能量、分布面积、历史起源等多方面特征相结合,并得到一些普遍性规律;最后,宏生态学还探讨物种在地理区域上的普遍性的分布模式,并对其假说进行检验和探讨.宏生态学在中国还处于刚起步阶段,但中国具有资源的优势,并具有一定的数据积累, 将在宏生态学研究中发挥越来越重要的作用.

356 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A common pattern of phylogenetic conservatism in ecological character is recognized and the challenges of using phylogenies of partial lineages are highlighted and phylogenetic approaches to three emergent properties of communities: species diversity, relative abundance distributions, and range sizes are reviewed.
Abstract: ▪ Abstract As better phylogenetic hypotheses become available for many groups of organisms, studies in community ecology can be informed by knowledge of the evolutionary relationships among coexisting species. We note three primary approaches to integrating phylogenetic information into studies of community organization: 1. examining the phylogenetic structure of community assemblages, 2. exploring the phylogenetic basis of community niche structure, and 3. adding a community context to studies of trait evolution and biogeography. We recognize a common pattern of phylogenetic conservatism in ecological character and highlight the challenges of using phylogenies of partial lineages. We also review phylogenetic approaches to three emergent properties of communities: species diversity, relative abundance distributions, and range sizes. Methodological advances in phylogenetic supertree construction, character reconstruction, null models for community assembly and character evolution, and metrics of community ...

3,615 citations

Journal ArticleDOI
TL;DR: This paper outlines such a formal basis to clarify the use of techniques applied to the challenge of estimating 'ecological niches', and analyzes example situations that can be modeled using these techniques, and clarify interpretation of results.
Abstract: Estimation of the dimensions of fundamental ecological niches of species to predict their geographic distributions is increasingly being attempted in systematics, ecology, conservation, public health, etc. This technique is often (of necessity) based on data comprising records of presences only. In recent years, modeling approaches have been devised to estimate these interrelated expressions of a species' ecology, distributional biology, and evolutionary history—nevertheless, a formal basis in ecological and evolutionary theory has largely been lacking. In this paper, we outline such a formal basis to clarify the use of techniques applied to the challenge of estimating 'ecological niches;' we analyze example situations that can be modeled using these techniques, and clarify interpretation of results.

1,667 citations

Journal ArticleDOI
TL;DR: This review uses knowledge gained from human‐modified landscapes to suggest eight hypotheses, which it hopes will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services.
Abstract: Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on

1,513 citations

Journal ArticleDOI
TL;DR: Current knowledge of microbial diversity at local and global scales is discussed, focusing on three spatial patterns: the distance-decay relationship, the taxa-area relationship, and the local:global taxa richness ratio.
Abstract: A central goal in ecology is to understand the spatial scaling of biodiversity. Patterns in the spatial distribution of organisms provide important clues about the underlying mechanisms that structure ecological communities and are central to setting conservation priorities. Although microorganisms comprise much of Earth’s biodiversity, little is known about their biodiversity scaling relationships relative to that for plants and animals. Here, we discuss current knowledge of microbial diversity at local and global scales. We focus on three spatial patterns: the distance–decay relationship (how community composition changes with geographic distance), the taxa–area relationship, and the local: global taxa richness ratio. Recent empirical analyses of these patterns for microorganisms suggest that there are biodiversity scaling rules common to all forms of life.

595 citations

Journal ArticleDOI
TL;DR: This review provides a critical and synthetic overview of body size variation in insects from a predominantly macroecological (large‐scale temporal and spatial) perspective and focuses on evolutionary trends, including gigantism, Cope's rule and the rates at which size change has taken place.
Abstract: Body size is a key feature of organisms and varies continuously because of the effects of natural selection on the size-dependency of resource acquisition and mortality rates. This review provides a critical and synthetic overview of body size variation in insects from a predominantly macroecological (large-scale temporal and spatial) perspective. Because of the importance of understanding the proximate determinants of adult size, it commences with a brief summary of the physiological mechanisms underlying adult body size and its variation, based mostly on findings for the model species Drosophila melanogaster and Manduca sexta. Variation in nutrition and temperature have variable effects on critical weight, the interval to cessation of growth (or terminal growth period) and growth rates, so influencing final adult size. Ontogenetic and phylogenetic variation in size, compensatory growth, scaling at the intra- and interspecific levels, sexual size dimorphism, and body size optimisation are then reviewed in light of their influences on individual and species body size frequency distributions. Explicit attention is given to evolutionary trends, including gigantism, Cope's rule and the rates at which size change has taken place, and to temporal ecological trends such as variation in size with succession and size-selectivity during the invasion process. Large-scale spatial variation in size at the intraspecific, interspecific and assemblage levels is considered, with special attention being given to the mechanisms proposed to underlie clinal variation in adult body size. Finally, areas particularly in need of additional research are identified.

566 citations