scispace - formally typeset
Search or ask a question
Author

Jiangxin Wang

Bio: Jiangxin Wang is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Electrochromism & Supercapacitor. The author has an hindex of 35, co-authored 58 publications receiving 6003 citations. Previous affiliations of Jiangxin Wang include The Chinese University of Hong Kong.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The stretchable graphene nanopaper is demonstrated for efficient human-motion detection applications and is fabricated for strain-sensor applications.
Abstract: Highly stretchable graphene-nanocellulose composite nanopaper is fabricated for strain-sensor applications. Three-dimensional macroporous nanopaper from crumpled graphene and nanocellulose is embedded in elastomer matrix to achieve stretchability up to 100%. The stretchable graphene nanopaper is demonstrated for efficient human-motion detection applications.

990 citations

Journal ArticleDOI
TL;DR: Extremely stretchable self‐healing strain sensors based on conductive hydrogels are successfully fabricated and have good response, signal stability, and repeatability under various human motion detections.
Abstract: Extremely stretchable self-healing strain sensors based on conductive hydrogels are successfully fabricated. The strain sensor can achieve autonomic self-heal electrically and mechanically under ambient conditions, and can sustain extreme elastic strain (1000%) with high gauge factor of 1.51. Furthermore, the strain sensors have good response, signal stability, and repeatability under various human motion detections.

711 citations

Journal ArticleDOI
TL;DR: A concept of multifunctional smart glass, which can change its color to dynamically adjust the daylight and solar heat input of the building or protect the users' privacy during the daytime, is presented.
Abstract: ConspectusThe rational design and exploration of electrochromic devices will find a wide range of applications in smart windows for energy-efficient buildings, low-power displays, self-dimming rear mirrors for automobiles, electrochromic e-skins, and so on. Electrochromic devices generally consist of multilayer structures with transparent conductors, electrochromic films, ion conductors, and ion storage films. Synthetic strategies and new materials for electrochromic films and transparent conductors, comprehensive electrochemical kinetic analysis, and novel device design are areas of active study worldwide. These are believed to be the key factors that will help to significantly improve the electrochromic performance and extend their application areas.In this Account, we present our strategies to design and fabricate electrochromic devices with high performance and multifunctionality. We first describe the synthetic strategies, in which a porous tungsten oxide (WO3) film with nearly ideal optical modulati...

461 citations

Journal ArticleDOI
28 Jan 2014-ACS Nano
TL;DR: The electrochromic devices were successfully implanted onto textile substrates for potential wearable applications and hold the promise for next-generation electronics such as stretchable, wearable, and implantable display applications.
Abstract: Stretchable and wearable WO3 electrochromic devices on silver nanowire (AgNW) elastic conductors are reported. The stretchable devices are mechanically robust and can be stretched, twisted, folded, and crumpled without performance failure. Fast coloration (1 s) and bleaching (4 s) time and good cyclic stability (81% retention after 100 cycles) were achieved at relaxed state. Proper functioning at stretched state (50% strain) was also demonstrated. The electrochromic devices were successfully implanted onto textile substrates for potential wearable applications. As most existing electrochromic devices are based on rigid technologies, the innovative devices in their soft form hold the promise for next-generation electronics such as stretchable, wearable, and implantable display applications.

386 citations

Journal ArticleDOI
TL;DR: A washable skin-touch-actuated textile-based triboelectric nanogenerator for harvesting mechanical energy from both voluntary and involuntary body motions, and is incorporable onto cloths/skin to capture the low output of 60 V from subtle involuntary friction with skin, well suited for users’ motion or daily operations.
Abstract: Textiles that are capable of harvesting biomechanical energy via triboelectric effects are of interest for self-powered wearable electronics. Fabrication of conformable and durable textiles with high triboelectric outputs remains challenging. Here we propose a washable skin-touch-actuated textile-based triboelectric nanogenerator for harvesting mechanical energy from both voluntary and involuntary body motions. Black phosphorus encapsulated with hydrophobic cellulose oleoyl ester nanoparticles serves as a synergetic electron-trapping coating, rendering a textile nanogenerator with long-term reliability and high triboelectricity regardless of various extreme deformations, severe washing, and extended environmental exposure. Considerably high output (~250–880 V, ~0.48–1.1 µA cm−2) can be attained upon touching by hand with a small force (~5 N) and low frequency (~4 Hz), which can power light-emitting diodes and a digital watch. This conformable all-textile-nanogenerator is incorporable onto cloths/skin to capture the low output of 60 V from subtle involuntary friction with skin, well suited for users’ motion or daily operations. Incorporation of triboelectric nanogenerators into textiles is attractive for self-powered wearable electronics. Here the authors employ black phosphorus with a hydrophobic coating in a durable, washable, and air permeable textile-based device that converts biomechanical motion into electricity.

378 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present recent advancements in the development of flexible and stretchable strain sensors, including skin-mountable and wearable strain sensors for personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth.
Abstract: There is a growing demand for flexible and soft electronic devices. In particular, stretchable, skin-mountable, and wearable strain sensors are needed for several potential applications including personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth. This Feature Article presents recent advancements in the development of flexible and stretchable strain sensors. The article shows that highly stretchable strain sensors are successfully being developed by new mechanisms such as disconnection between overlapped nanomaterials, crack propagation in thin films, and tunneling effect, different from traditional strain sensing mechanisms. Strain sensing performances of recently reported strain sensors are comprehensively studied and discussed, showing that appropriate choice of composite structures as well as suitable interaction between functional nanomaterials and polymers are essential for the high performance strain sensing. Next, simulation results of piezoresistivity of stretchable strain sensors by computational models are reported. Finally, potential applications of flexible strain sensors are described. This survey reveals that flexible, skin-mountable, and wearable strain sensors have potential in diverse applications while several grand challenges have to be still overcome.

2,154 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of the intrinsic mechanical properties of the graphene-family of materials along with the preparation and properties of bulk graphene-based nanocomposites is thoroughly examined.

1,531 citations

Journal ArticleDOI
TL;DR: An overview of the quick development in TADF mechanisms, materials, and applications is presented, with a particular emphasis on their different types of metal-organic complexes, D-A molecules, and fullerenes.
Abstract: The design and characterization of thermally activated delayed fluorescence (TADF) materials for optoelectronic applications represents an active area of recent research in organoelectronics. Noble metal-free TADF molecules offer unique optical and electronic properties arising from the efficient transition and interconversion between the lowest singlet (S1) and triplet (T1) excited states. Their ability to harvest triplet excitons for fluorescence through facilitated reverse intersystem crossing (T1→S1) could directly impact their properties and performances, which is attractive for a wide variety of low-cost optoelectronic devices. TADF-based organic light-emitting diodes, oxygen, and temperature sensors show significantly upgraded device performances that are comparable to the ones of traditional rare-metal complexes. Here we present an overview of the quick development in TADF mechanisms, materials, and applications. Fundamental principles on design strategies of TADF materials and the common relationship between the molecular structures and optoelectronic properties for diverse research topics and a survey of recent progress in the development of TADF materials, with a particular emphasis on their different types of metal-organic complexes, D-A molecules, and fullerenes, are highlighted. The success in the breakthrough of the theoretical and technical challenges that arise in developing high-performance TADF materials may pave the way to shape the future of organoelectronics.

1,473 citations

Journal ArticleDOI
TL;DR: The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed.
Abstract: Flexible and stretchable physical sensors that can measure and quantify electrical signals generated by human activities are attracting a great deal of attention as they have unique characteristics, such as ultrathinness, low modulus, light weight, high flexibility, and stretchability. These flexible and stretchable physical sensors conformally attached on the surface of organs or skin can provide a new opportunity for human-activity monitoring and personal healthcare. Consequently, in recent years there has been considerable research effort devoted to the development of flexible and stretchable physical sensors to fulfill the requirements of future technology, and much progress has been achieved. Here, the most recent developments of flexible and stretchable physical sensors are described, including temperature, pressure, and strain sensors, and flexible and stretchable sensor-integrated platforms. The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed first. In the next section, recent progress regarding sensor-integrated wearable platforms is overviewed in detail. Some of the latest achievements regarding self-powered sensor-integrated wearable platform technologies are also reviewed. Further research direction and challenges are also proposed to develop a fully sensor-integrated wearable platform for monitoring human activity and personal healthcare in the near future.

1,469 citations

Journal ArticleDOI
TL;DR: The state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors is summarized and key technical challenges are highlighted regarding further research in this thriving field.
Abstract: Notably, many significant breakthroughs for a new generation of supercapacitors have been reported in recent years, related to theoretical understanding, material synthesis and device designs. Herein, we summarize the state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors. Firstly, fundamental understanding of the mechanism is mainly focused on the relationship between the structural properties of electrode materials and their electrochemical performances based on some in situ characterization techniques and simulations. Secondly, some emerging electrode materials are discussed, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), MXenes, metal nitrides, black phosphorus, LaMnO3, and RbAg4I5/graphite. Thirdly, the device innovations for the next generation of supercapacitors are provided successively, mainly emphasizing flow supercapacitors, alternating current (AC) line-filtering supercapacitors, redox electrolyte enhanced supercapacitors, metal ion hybrid supercapacitors, micro-supercapacitors (fiber, plane and three-dimensional) and multifunctional supercapacitors including electrochromic supercapacitors, self-healing supercapacitors, piezoelectric supercapacitors, shape-memory supercapacitors, thermal self-protective supercapacitors, thermal self-charging supercapacitors, and photo self-charging supercapacitors. Finally, the future developments and key technical challenges are highlighted regarding further research in this thriving field.

1,397 citations