scispace - formally typeset
Search or ask a question
Author

Jianing Chen

Bio: Jianing Chen is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Plasmon & Graphene. The author has an hindex of 24, co-authored 52 publications receiving 4162 citations. Previous affiliations of Jianing Chen include Lund University & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
05 Jul 2012-Nature
TL;DR: A successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices and biosensing applications.
Abstract: The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive A promising way to achieve electric control of light could be through plasmon polaritons—coupled excitations of photons and charge carriers—in graphene In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short—more than 40 times smaller than the wavelength of illumination We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices and biosensing applications

1,845 citations

Journal ArticleDOI
20 Jun 2014-Science
TL;DR: A versatile platform technology based on resonant optical antennas and conductivity patterns for launching and control of propagating graphene plasmons, an essential step for the development of graphene plasmonic circuits.
Abstract: Graphene plasmons promise unique possibilities for controlling light in nanoscale devices and for merging optics with electronics We developed a versatile platform technology based on resonant optical antennas and conductivity patterns for launching and control of propagating graphene plasmons, an essential step for the development of graphene plasmonic circuits We launched and focused infrared graphene plasmons with geometrically tailored antennas and observed how they refracted when passing through a two-dimensional conductivity pattern, here a prism-shaped bilayer To that end, we directly mapped the graphene plasmon wavefronts by means of an imaging method that will be useful in testing future design concepts for nanoscale graphene plasmonic circuits and devices

328 citations

Journal ArticleDOI
TL;DR: Experimental evidence is provided that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering.
Abstract: Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering.

230 citations

Journal ArticleDOI
TL;DR: It is demonstrated how the concerted action of nanoplasmonics and magnetization can manipulate the sign of rotation of the reflected light’s polarization in ferromagnetic nanomaterials and how this effect can be dynamically controlled and employed to devise conceptually new schemes for biochemosensing.
Abstract: We introduce a new perspective on magnetoplasmonics in nickel nanoferromagnets by exploiting the phase tunability of the optical polarizability due to localized surface plasmons and simultaneous magneto-optical activity. We demonstrate how the concerted action of nanoplasmonics and magnetization can manipulate the sign of rotation of the reflected light’s polarization (i.e., to produce Kerr rotation reversal) in ferromagnetic nanomaterials and, further, how this effect can be dynamically controlled and employed to devise conceptually new schemes for biochemosensing.

219 citations

Journal ArticleDOI
TL;DR: In this paper, a van der Waals crystal, α-MoO3, is shown to support in-plane hyperbolic polariton guided modes at mid-infrared frequencies without the need for patterning.
Abstract: Hyperbolic media have attracted much attention in the photonics community due to their ability to confine light to arbitrarily small volumes and their potential applications to super-resolution technologies. The two-dimensional counterparts of these media can be achieved with hyperbolic metasurfaces that support in-plane hyperbolic guided modes upon nanopatterning, which, however, poses notable fabrication challenges and limits the achievable confinement. We show that thin flakes of a van der Waals crystal, α-MoO3, can support naturally in-plane hyperbolic polariton guided modes at mid-infrared frequencies without the need for patterning. This is possible because α-MoO3 is a biaxial hyperbolic crystal with three different Reststrahlen bands, each corresponding to a different crystalline axis. These findings can pave the way toward a new paradigm to manipulate and confine light in planar photonic devices.

215 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the field emerging at the intersection of graphene physics and plasmonics and review the applications of graphene-based plasmons for optical devices with extremely high speed, low driving voltage, low power consumption and compact sizes.
Abstract: Two rich and vibrant fields of investigation, graphene physics and plasmonics, strongly overlap Not only does graphene possess intrinsic plasmons that are tunable and adjustable, but a combination of graphene with noble-metal nanostructures promises a variety of exciting applications for conventional plasmonics The versatility of graphene means that graphene-based plasmonics may enable the manufacture of novel optical devices working in different frequency ranges, from terahertz to the visible, with extremely high speed, low driving voltage, low power consumption and compact sizes Here we review the field emerging at the intersection of graphene physics and plasmonics

2,475 citations

Journal ArticleDOI
TL;DR: In this article, the optical properties and applications of various two-dimensional materials including transition metal dichalcogenides are reviewed with an emphasis on nanophotonic applications, and two different approaches for enhancing their interactions with light: through their integration with external photonic structures, and through intrinsic polaritonic resonances.
Abstract: The optical properties of graphene and emerging two-dimensional materials including transition metal dichalcogenides are reviewed with an emphasis on nanophotonic applications. Two-dimensional materials exhibit diverse electronic properties, ranging from insulating hexagonal boron nitride and semiconducting transition metal dichalcogenides such as molybdenum disulphide, to semimetallic graphene. In this Review, we first discuss the optical properties and applications of various two-dimensional materials, and then cover two different approaches for enhancing their interactions with light: through their integration with external photonic structures, and through intrinsic polaritonic resonances. Finally, we present a narrow-bandgap layered material — black phosphorus — that serendipitously bridges the energy gap between the zero-bandgap graphene and the relatively large-bandgap transition metal dichalcogenides. The plethora of two-dimensional materials and their heterostructures, together with the array of available approaches for enhancing the light–matter interaction, offers the promise of scientific discoveries and nanophotonics technologies across a wide range of the electromagnetic spectrum.

2,414 citations

Journal ArticleDOI
05 Jul 2012-Nature
TL;DR: Using infrared nano-imaging, it is shown that common graphene/SiO2/Si back-gated structures support propagating surface plasmons and changes both the amplitude and the wavelength are altered by varying the gate voltage.
Abstract: Surface plasmons are collective oscillations of electrons in metals or semiconductors that enable confinement and control of electromagnetic energy at subwavelength scales. Rapid progress in plasmonics has largely relied on advances in device nano-fabrication, whereas less attention has been paid to the tunable properties of plasmonic media. One such medium--graphene--is amenable to convenient tuning of its electronic and optical properties by varying the applied voltage. Here, using infrared nano-imaging, we show that common graphene/SiO(2)/Si back-gated structures support propagating surface plasmons. The wavelength of graphene plasmons is of the order of 200 nanometres at technologically relevant infrared frequencies, and they can propagate several times this distance. We have succeeded in altering both the amplitude and the wavelength of these plasmons by varying the gate voltage. Using plasmon interferometry, we investigated losses in graphene by exploring real-space profiles of plasmon standing waves formed between the tip of our nano-probe and the edges of the samples. Plasmon dissipation quantified through this analysis is linked to the exotic electrodynamics of graphene. Standard plasmonic figures of merit of our tunable graphene devices surpass those of common metal-based structures.

1,849 citations