scispace - formally typeset
Search or ask a question
Author

Jianke Zhu

Bio: Jianke Zhu is an academic researcher from Zhejiang University. The author has contributed to research in topics: Image retrieval & Computer science. The author has an hindex of 36, co-authored 138 publications receiving 7389 citations. Previous affiliations of Jianke Zhu include ETH Zurich & The Chinese University of Hong Kong.


Papers
More filters
Book ChapterDOI
Yang Li1, Jianke Zhu1
06 Sep 2014
TL;DR: This paper presents a very appealing tracker based on the correlation filter framework and suggests an effective scale adaptive scheme to tackle the problem of the fixed template size in kernel correlation filter tracker.
Abstract: Although the correlation filter-based trackers achieve the competitive results both on accuracy and robustness, there is still a need to improve the overall tracking capability. In this paper, we presented a very appealing tracker based on the correlation filter framework. To tackle the problem of the fixed template size in kernel correlation filter tracker, we suggest an effective scale adaptive scheme. Moreover, the powerful features including HoG and color-naming are integrated together to further boost the overall tracking performance. The extensive empirical evaluations on the benchmark videos and VOT 2014 dataset demonstrate that the proposed tracker is very promising for the various challenging scenarios. Our method successfully tracked the targets in about 72% videos and outperformed the state-of-the-art trackers on the benchmark dataset with 51 sequences.

1,298 citations

Proceedings ArticleDOI
03 Nov 2014
TL;DR: This paper investigates a framework of deep learning with application to CBIR tasks with an extensive set of empirical studies by examining a state-of-the-art deep learning method (Convolutional Neural Networks) for CBIr tasks under varied settings.
Abstract: Learning effective feature representations and similarity measures are crucial to the retrieval performance of a content-based image retrieval (CBIR) system. Despite extensive research efforts for decades, it remains one of the most challenging open problems that considerably hinders the successes of real-world CBIR systems. The key challenge has been attributed to the well-known ``semantic gap'' issue that exists between low-level image pixels captured by machines and high-level semantic concepts perceived by human. Among various techniques, machine learning has been actively investigated as a possible direction to bridge the semantic gap in the long term. Inspired by recent successes of deep learning techniques for computer vision and other applications, in this paper, we attempt to address an open problem: if deep learning is a hope for bridging the semantic gap in CBIR and how much improvements in CBIR tasks can be achieved by exploring the state-of-the-art deep learning techniques for learning feature representations and similarity measures. Specifically, we investigate a framework of deep learning with application to CBIR tasks with an extensive set of empirical studies by examining a state-of-the-art deep learning method (Convolutional Neural Networks) for CBIR tasks under varied settings. From our empirical studies, we find some encouraging results and summarize some important insights for future research.

865 citations

Book ChapterDOI
Matej Kristan1, Ales Leonardis2, Jiří Matas3, Michael Felsberg4, Roman Pflugfelder5, Luka Cehovin1, Tomas Vojir3, Gustav Häger4, Alan Lukežič1, Gustavo Fernandez5, Abhinav Gupta6, Alfredo Petrosino7, Alireza Memarmoghadam8, Alvaro Garcia-Martin9, Andres Solis Montero10, Andrea Vedaldi11, Andreas Robinson4, Andy J. Ma12, Anton Varfolomieiev13, A. Aydin Alatan14, Aykut Erdem15, Bernard Ghanem16, Bin Liu, Bohyung Han17, Brais Martinez18, Chang-Ming Chang19, Changsheng Xu20, Chong Sun21, Daijin Kim17, Dapeng Chen22, Dawei Du20, Deepak Mishra23, Dit-Yan Yeung24, Erhan Gundogdu25, Erkut Erdem15, Fahad Shahbaz Khan4, Fatih Porikli26, Fatih Porikli27, Fei Zhao20, Filiz Bunyak28, Francesco Battistone7, Gao Zhu26, Giorgio Roffo29, Gorthi R. K. Sai Subrahmanyam23, Guilherme Sousa Bastos30, Guna Seetharaman31, Henry Medeiros32, Hongdong Li26, Honggang Qi20, Horst Bischof33, Horst Possegger33, Huchuan Lu21, Hyemin Lee17, Hyeonseob Nam34, Hyung Jin Chang35, Isabela Drummond30, Jack Valmadre11, Jae-chan Jeong36, Jaeil Cho36, Jae-Yeong Lee36, Jianke Zhu37, Jiayi Feng20, Jin Gao20, Jin-Young Choi, Jingjing Xiao2, Ji-Wan Kim36, Jiyeoup Jeong, João F. Henriques11, Jochen Lang10, Jongwon Choi, José M. Martínez9, Junliang Xing20, Junyu Gao20, Kannappan Palaniappan28, Karel Lebeda38, Ke Gao28, Krystian Mikolajczyk35, Lei Qin20, Lijun Wang21, Longyin Wen19, Luca Bertinetto11, Madan Kumar Rapuru23, Mahdieh Poostchi28, Mario Edoardo Maresca7, Martin Danelljan4, Matthias Mueller16, Mengdan Zhang20, Michael Arens, Michel Valstar18, Ming Tang20, Mooyeol Baek17, Muhammad Haris Khan18, Naiyan Wang24, Nana Fan39, Noor M. Al-Shakarji28, Ondrej Miksik11, Osman Akin15, Payman Moallem8, Pedro Senna30, Philip H. S. Torr11, Pong C. Yuen12, Qingming Huang20, Qingming Huang39, Rafael Martin-Nieto9, Rengarajan Pelapur28, Richard Bowden38, Robert Laganiere10, Rustam Stolkin2, Ryan Walsh32, Sebastian B. Krah, Shengkun Li19, Shengping Zhang39, Shizeng Yao28, Simon Hadfield38, Simone Melzi29, Siwei Lyu19, Siyi Li24, Stefan Becker, Stuart Golodetz11, Sumithra Kakanuru23, Sunglok Choi36, Tao Hu20, Thomas Mauthner33, Tianzhu Zhang20, Tony P. Pridmore18, Vincenzo Santopietro7, Weiming Hu20, Wenbo Li40, Wolfgang Hübner, Xiangyuan Lan12, Xiaomeng Wang18, Xin Li39, Yang Li37, Yiannis Demiris35, Yifan Wang21, Yuankai Qi39, Zejian Yuan22, Zexiong Cai12, Zhan Xu37, Zhenyu He39, Zhizhen Chi21 
08 Oct 2016
TL;DR: The Visual Object Tracking challenge VOT2016 goes beyond its predecessors by introducing a new semi-automatic ground truth bounding box annotation methodology and extending the evaluation system with the no-reset experiment.
Abstract: The Visual Object Tracking challenge VOT2016 aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 70 trackers are presented, with a large number of trackers being published at major computer vision conferences and journals in the recent years. The number of tested state-of-the-art trackers makes the VOT 2016 the largest and most challenging benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the Appendix. The VOT2016 goes beyond its predecessors by (i) introducing a new semi-automatic ground truth bounding box annotation methodology and (ii) extending the evaluation system with the no-reset experiment. The dataset, the evaluation kit as well as the results are publicly available at the challenge website (http://votchallenge.net).

744 citations

Proceedings ArticleDOI
Matej Kristan1, Ales Leonardis2, Jiri Matas3, Michael Felsberg4, Roman Pflugfelder5, Luka Čehovin Zajc1, Tomas Vojir3, Gustav Häger4, Alan Lukezic1, Abdelrahman Eldesokey4, Gustavo Fernandez5, Alvaro Garcia-Martin6, Andrej Muhič1, Alfredo Petrosino7, Alireza Memarmoghadam8, Andrea Vedaldi9, Antoine Manzanera10, Antoine Tran10, A. Aydin Alatan11, Bogdan Mocanu, Boyu Chen12, Chang Huang, Changsheng Xu13, Chong Sun12, Dalong Du, David Zhang, Dawei Du13, Deepak Mishra, Erhan Gundogdu11, Erhan Gundogdu14, Erik Velasco-Salido, Fahad Shahbaz Khan4, Francesco Battistone, Gorthi R. K. Sai Subrahmanyam, Goutam Bhat4, Guan Huang, Guilherme Sousa Bastos, Guna Seetharaman15, Hongliang Zhang16, Houqiang Li17, Huchuan Lu12, Isabela Drummond, Jack Valmadre9, Jae-chan Jeong18, Jaeil Cho18, Jae-Yeong Lee18, Jana Noskova, Jianke Zhu19, Jin Gao13, Jingyu Liu13, Ji-Wan Kim18, João F. Henriques9, José M. Martínez, Junfei Zhuang20, Junliang Xing13, Junyu Gao13, Kai Chen21, Kannappan Palaniappan22, Karel Lebeda, Ke Gao22, Kris M. Kitani23, Lei Zhang, Lijun Wang12, Lingxiao Yang, Longyin Wen24, Luca Bertinetto9, Mahdieh Poostchi22, Martin Danelljan4, Matthias Mueller25, Mengdan Zhang13, Ming-Hsuan Yang26, Nianhao Xie16, Ning Wang17, Ondrej Miksik9, Payman Moallem8, Pallavi Venugopal M, Pedro Senna, Philip H. S. Torr9, Qiang Wang13, Qifeng Yu16, Qingming Huang13, Rafael Martin-Nieto, Richard Bowden27, Risheng Liu12, Ruxandra Tapu, Simon Hadfield27, Siwei Lyu28, Stuart Golodetz9, Sunglok Choi18, Tianzhu Zhang13, Titus Zaharia, Vincenzo Santopietro, Wei Zou13, Weiming Hu13, Wenbing Tao21, Wenbo Li28, Wengang Zhou17, Xianguo Yu16, Xiao Bian24, Yang Li19, Yifan Xing23, Yingruo Fan20, Zheng Zhu13, Zhipeng Zhang13, Zhiqun He20 
01 Jul 2017
TL;DR: The Visual Object Tracking challenge VOT2017 is the fifth annual tracker benchmarking activity organized by the VOT initiative; results of 51 trackers are presented; many are state-of-the-art published at major computer vision conferences or journals in recent years.
Abstract: The Visual Object Tracking challenge VOT2017 is the fifth annual tracker benchmarking activity organized by the VOT initiative. Results of 51 trackers are presented; many are state-of-the-art published at major computer vision conferences or journals in recent years. The evaluation included the standard VOT and other popular methodologies and a new "real-time" experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The VOT2017 goes beyond its predecessors by (i) improving the VOT public dataset and introducing a separate VOT2017 sequestered dataset, (ii) introducing a realtime tracking experiment and (iii) releasing a redesigned toolkit that supports complex experiments. The dataset, the evaluation kit and the results are publicly available at the challenge website1.

485 citations

Proceedings ArticleDOI
25 Jun 2006
TL;DR: A framework for "batch mode active learning" that applies the Fisher information matrix to select a number of informative examples simultaneously and is more effective than the state-of-the-art algorithms for active learning.
Abstract: The goal of active learning is to select the most informative examples for manual labeling. Most of the previous studies in active learning have focused on selecting a single unlabeled example in each iteration. This could be inefficient since the classification model has to be retrained for every labeled example. In this paper, we present a framework for "batch mode active learning" that applies the Fisher information matrix to select a number of informative examples simultaneously. The key computational challenge is how to efficiently identify the subset of unlabeled examples that can result in the largest reduction in the Fisher information. To resolve this challenge, we propose an efficient greedy algorithm that is based on the property of submodular functions. Our empirical studies with five UCI datasets and one real-world medical image classification show that the proposed batch mode active learning algorithm is more effective than the state-of-the-art algorithms for active learning.

473 citations


Cited by
More filters
01 Jan 2009
TL;DR: This report provides a general introduction to active learning and a survey of the literature, including a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date.
Abstract: The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer training labels if it is allowed to choose the data from which it learns. An active learner may pose queries, usually in the form of unlabeled data instances to be labeled by an oracle (e.g., a human annotator). Active learning is well-motivated in many modern machine learning problems, where unlabeled data may be abundant or easily obtained, but labels are difficult, time-consuming, or expensive to obtain. This report provides a general introduction to active learning and a survey of the literature. This includes a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date. An analysis of the empirical and theoretical evidence for successful active learning, a summary of problem setting variants and practical issues, and a discussion of related topics in machine learning research are also presented.

5,227 citations

Journal ArticleDOI
TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Abstract: Due to object detection’s close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles that combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy, and optimization function. In this paper, we provide a review of deep learning-based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely, the convolutional neural network. Then, we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection, and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network-based learning systems.

3,097 citations

01 Jan 2006

3,012 citations