scispace - formally typeset
Search or ask a question
Author

Jianlei Han

Bio: Jianlei Han is an academic researcher from Center for Excellence in Education. The author has contributed to research in topics: Photon upconversion & Luminescence. The author has an hindex of 16, co-authored 35 publications receiving 1084 citations. Previous affiliations of Jianlei Han include Tianjin University & Chinese Academy of Sciences.

Papers
More filters
Journal ArticleDOI
TL;DR: The present status and progress of self-assembled nanomaterials with CPL activity are reviewed and an overview of the key factors in regulating chiral emission materials at the supramolecular level will largely boost their application in multidisciplinary fields.
Abstract: Currently, the development of circularly polarized luminescent (CPL) materials has drawn extensive attention due to the numerous potential applications in optical data storage, displays, backlights in 3D displays, and so on. While the fabrication of CPL-active materials generally requires chiral luminescent molecules, the introduction of the "self-assembly" concept offers a new perspective in obtaining the CPL-active materials. Following this approach, various self-assembled materials, including organic-, inorganic-, and hybrid systems can be endowed with CPL properties. Benefiting from the advantages of self-assembly, not only chiral molecules, but also achiral species, as well as inorganic nanoparticles have potential to be self-assembled into chiral nanoassemblies showing CPL activity. In addition, the dissymmetry factor, an important parameter of CPL materials, can be enhanced through various pathways of self-assembly. Here, the present status and progress of self-assembled nanomaterials with CPL activity are reviewed. An overview of the key factors in regulating chiral emission materials at the supramolecular level will largely boost their application in multidisciplinary fields.

457 citations

Journal ArticleDOI
TL;DR: This study proposes a general approach for fabricating 1D circularly polarized luminescent nanoassemblies from achiral aromatic molecules or aggregation-induced emissive compounds (AIEgens), and it is found that a C3 symmetric chiral gelator can individually form hexagonal nanotube structures and encapsulate the guest molecules.
Abstract: Circularly polarized luminescent (CPL) materials are currently attracting great interest. While a chiral building is usually necessary in order to obtain CPL materials, here, this study proposes a general approach for fabricating 1D circularly polarized luminescent nanoassemblies from achiral aromatic molecules or aggregation-induced emissive compounds (AIEgens). It is found that a C3 symmetric chiral gelator can individually form hexagonal nanotube structures and encapsulate the guest molecules. When achiral AIEgens are encapsulated into the confined nanotubes via organogelation, the AIEgens will emit circularly polarized luminescence. Further, the direction of the CPL could be controlled by the supramolecular chirality of the nanotube. Remarkably, the approach is universal and various kinds of the AIEgens can be doped to show such property, providing a full-color-tunable circularly polarized luminescence.

224 citations

Journal ArticleDOI
TL;DR: The recent progress of excited-state-regulation involved CPL-active materials is discussed and direct regulation of the excited state of the chiral system will serve as a new platform to understand and regulate the CPL activity and will be helpful to develop smart chiroptical materials.
Abstract: ConspectusChiral functional materials with circularly polarized luminescence (CPL) have risen rapidly in recent years because of their fascinating characteristics and potential applications in vari...

167 citations

Journal ArticleDOI
TL;DR: Amplification of circularly polarized luminescence (CPL) is demonstrated in a triplet-triplet annihilation-based photon upconversion (TTA-UC) system and one order of magnitude amplification of the dissymmetry factor glum in UC-CPL was obtained in comparison with the normal promoted CPL.
Abstract: Amplification of circularly polarized luminescence (CPL) is demonstrated in a triplet-triplet annihilation-based photon upconversion (TTA-UC) system. When chiral binaphthyldiamine acceptors are sensitized with an achiral Pt(II) octaethylporphine (PtOEP) in solution, upconverted circularly polarized luminescence (UC-CPL) were observed for the first time, in which the positive or negative circularly polarized emission could be obtained respectively, following the molecular chirality of the acceptors (R/S). More interestingly, one order of magnitude amplification of the dissymmetry factor glum in UC-CPL was obtained in comparison with the normal promoted CPL. The multistep photophysical process of TTA-UC including triplet-triplet energy transfer (TTET) and triplet-triplet annihilation (TTA) have been suggested to enhance the UC-CPL, which provided a new strategy to design CPL materials with a higher dissymmetry factor.

165 citations

Journal ArticleDOI
TL;DR: The design strategy of the chiral emissive CT complexes is expected to help the development of new molecular engineering strategies for designing highly efficient CPL-active materials.
Abstract: Achieving a large dissymmetry factor (glum ) is a challenge in the field of circularly polarized luminescence (CPL). A chiral charge-transfer (CT) system consisting of chiral electron donor and achiral electron acceptor shows bright circularly polarized emission with large glum value. The chiral emissive CT complexes could be fabricated through various approaches, such as grinding, crystallization, spin coating, and gelatinization, by simply blending chiral donor and achiral acceptor. The structural synergy originating from π-π stacking and strong CT interactions resulted in the long-range ordered self-assembly, enabling the formation of supramolecular gels. Benefiting from the large magnetic dipole transition moment in the CT state, the CPL activity of CT complexes exhibited large circular polarization. Our design strategy of the chiral emissive CT complexes is expected to help the development of new molecular engineering strategies for designing highly efficient CPL-active materials.

123 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review focuses on the new properties of materials endowed by molecular aggregates beyond the microscopic molecular level and hopes this review will inspire more research into molecular ensembles at/beyond mesoscale level and lead to the significant progresses in material science, biological science, etc.
Abstract: Aggregation-induced emission (AIE) describes a photophysical phenomenon in which molecular aggregates exhibit stronger emission than the single molecules. Over the course of the last 20 years, AIE research has made great strides in material development, mechanistic study and high-tech applications. The achievements of AIE research demonstrate that molecular aggregates show many properties and functions that are absent in molecular species. In this review, we summarize the advances in the field of AIE and its related areas. We specifically focus on the new properties of materials attained by molecular aggregates beyond the microscopic molecular level. We hope this review will inspire more research into molecular ensembles at and beyond the meso level and lead to the significant progress in material and biological science.

655 citations

Journal ArticleDOI
TL;DR: The present status and progress of self-assembled nanomaterials with CPL activity are reviewed and an overview of the key factors in regulating chiral emission materials at the supramolecular level will largely boost their application in multidisciplinary fields.
Abstract: Currently, the development of circularly polarized luminescent (CPL) materials has drawn extensive attention due to the numerous potential applications in optical data storage, displays, backlights in 3D displays, and so on. While the fabrication of CPL-active materials generally requires chiral luminescent molecules, the introduction of the "self-assembly" concept offers a new perspective in obtaining the CPL-active materials. Following this approach, various self-assembled materials, including organic-, inorganic-, and hybrid systems can be endowed with CPL properties. Benefiting from the advantages of self-assembly, not only chiral molecules, but also achiral species, as well as inorganic nanoparticles have potential to be self-assembled into chiral nanoassemblies showing CPL activity. In addition, the dissymmetry factor, an important parameter of CPL materials, can be enhanced through various pathways of self-assembly. Here, the present status and progress of self-assembled nanomaterials with CPL activity are reviewed. An overview of the key factors in regulating chiral emission materials at the supramolecular level will largely boost their application in multidisciplinary fields.

457 citations

Journal ArticleDOI
TL;DR: The emergence of aggregation-induced emission luminogens (AIEgens) has significantly stimulated the development of luminescent supramolecular materials because their strong emissions in the aggregated state have resolved the notorious obstacle of the aggregation-caused quenching (ACQ) effect.
Abstract: The emergence of aggregation-induced emission luminogens (AIEgens) has significantly stimulated the development of luminescent supramolecular materials because their strong emissions in the aggregated state have resolved the notorious obstacle of the aggregation-caused quenching (ACQ) effect, thereby enabling AIEgen-based supramolecular materials to have a promising prospect in the fields of luminescent materials, sensors, bioimaging, drug delivery, and theranostics. Moreover, in contrast to conventional fluorescent molecules, the configuration of AIEgens is highly twisted in space. Investigating AIEgens and the corresponding supramolecular materials provides fundamental insights into the self-assembly of nonplanar molecules, drastically expands the building blocks of supramolecular materials, and pushes forward the frontiers of supramolecular chemistry. In this review, we will summarize the basic concepts, seminal studies, recent trends, and perspectives in the construction and applications of AIEgen-based supramolecular materials with the hope to inspire more interest and additional ideas from researchers and further advance the development of supramolecular chemistry.

432 citations

Journal ArticleDOI
TL;DR: In this review, this review systematically summarize the recent progress in chiral emitter based OLEDs with CPEL properties including CPEL based on chiral conjugated polymers, CPEL Based on Chiral metal complexes, and CPELBased onchiral simple organic molecules, especially chiral thermally activated delayed fluorescence (TADF) molecules.
Abstract: Since the first attempt that was made to obtain direct circularly polarized (CP) light from OLEDs by Meijer et al. in 1997, considerable efforts have been devoted to the development of circularly polarized organic light-emitting diodes (CP-OLEDs), particularly in the recent years. Circularly polarized electroluminescence (CPEL) based on OLEDs has attracted increasing interest for its efficient ability to generate CP light directly and wide potential applications in 3D displays, optical data storage, and optical spintronics. In this review, we systematically summarize the recent progress in chiral emitter based OLEDs with CPEL properties including CPEL based on chiral conjugated polymers, CPEL based on chiral metal complexes, and CPEL based on chiral simple organic molecules, especially chiral thermally activated delayed fluorescence (TADF) molecules. We believe that this review will provide a promising perspective of chiral emitter based OLEDs with CPEL properties for a broad range of scientists in different disciplinary areas and attract a growing number of researchers to this fast-growing research field.

427 citations