scispace - formally typeset
Search or ask a question
Author

Jianming Lu

Other affiliations: University of Texas at Dallas
Bio: Jianming Lu is an academic researcher from University of Texas Southwestern Medical Center. The author has contributed to research in topics: Wnt signaling pathway & LRP6. The author has an hindex of 9, co-authored 13 publications receiving 1681 citations. Previous affiliations of Jianming Lu include University of Texas at Dallas.

Papers
More filters
Journal ArticleDOI
TL;DR: Two novel classes of small molecules are discovered that disrupt Wnt pathway responses and contribute to Wnt-independent signal transduction pathways and thus could be broadly exploited for chemical genetics and therapeutic goals.
Abstract: The pervasive influence of secreted Wnt signaling proteins in tissue homeostasis and tumorigenesis has galvanized efforts to identify small molecules that target Wnt-mediated cellular responses. By screening a diverse synthetic chemical library, we have discovered two new classes of small molecules that disrupt Wnt pathway responses; whereas one class inhibits the activity of Porcupine, a membrane-bound acyltransferase that is essential to the production of Wnt proteins, the other abrogates destruction of Axin proteins, which are suppressors of Wnt/beta-catenin pathway activity. With these small molecules, we establish a chemical genetic approach for studying Wnt pathway responses and stem cell function in adult tissue. We achieve transient, reversible suppression of Wnt/beta-catenin pathway response in vivo, and we establish a mechanism-based approach to target cancerous cell growth. The signal transduction mechanisms shown here to be chemically tractable additionally contribute to Wnt-independent signal transduction pathways and thus could be broadly exploited for chemical genetics and therapeutic goals.

1,353 citations

Journal ArticleDOI
TL;DR: A novel class of small molecules (IWR-1/2, inhibitors of Wnt response) that antagonize Wnt signaling by stabilizing the Axin destruction complex are reported.

151 citations

Journal ArticleDOI
TL;DR: It is demonstrated that diverse chemical structures are able to inhibit Porcn by targeting its putative active site, and this collection of small molecules facilitates rapid dissection of Wnt gene function in vivo by limiting the influence of redundant WNT gene functions on phenotypic outcomes.

81 citations

Journal ArticleDOI
TL;DR: The direct C−H functionalization of imidazolinone is achieved with Pd(OAc2/NaOAc in DMSO in order to synthesize Dibromophakellstatin in five steps.
Abstract: The direct C−H functionalization of imidazolinone is achieved with Pd(OAc)2/NaOAc in DMSO. Dibromophakellstatin can be synthesized in five steps with 40% overall yield using this new C−H activation method.

74 citations

Journal ArticleDOI
TL;DR: An asymmetric synthesis of ageliferin is described, using a Mn(III)-mediated oxidative radical cyclization reaction as the key step to construct the core skeleton of this pyrrole-imidazole dimer.
Abstract: We describe herein an asymmetric synthesis of ageliferin. A Mn(III)-mediated oxidative radical cyclization reaction was used as the key step to construct the core skeleton of this pyrrole–imidazole dimer. This approach resembles the biogenic [4 + 2] dimerization in an intramolecular fashion.

42 citations


Cited by
More filters
Journal ArticleDOI
Donna M. Muzny1, Matthew N. Bainbridge1, Kyle Chang1, Huyen Dinh1  +317 moreInstitutions (24)
19 Jul 2012-Nature
TL;DR: Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.
Abstract: To characterize somatic alterations in colorectal carcinoma, we conducted a genome-scale analysis of 276 samples, analysing exome sequence, DNA copy number, promoter methylation and messenger RNA and microRNA expression. A subset of these samples (97) underwent low-depth-of-coverage whole-genome sequencing. In total, 16% of colorectal carcinomas were found to be hypermutated: three-quarters of these had the expected high microsatellite instability, usually with hypermethylation and MLH1 silencing, and one-quarter had somatic mismatch-repair gene and polymerase e (POLE) mutations. Excluding the hypermutated cancers, colon and rectum cancers were found to have considerably similar patterns of genomic alteration. Twenty-four genes were significantly mutated, and in addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9 and FAM123B. Recurrent copy-number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include the fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.

6,883 citations

Journal ArticleDOI
TL;DR: Some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis are highlighted, and potential therapeutic implications are discussed.

4,926 citations

Journal ArticleDOI
08 Jun 2012-Cell
TL;DR: An update of the core Wnt/β-catenin signaling pathway is provided, how its various components contribute to disease, and outstanding questions to be addressed in the future are discussed.

4,561 citations

Journal ArticleDOI
TL;DR: This review summarizes the development and scope of carboxylates as cocatalysts in transition-metal-catalyzed C-H functionalizations until autumn 2010 and proposes new acronyms, such as CMD (concerted metalationdeprotonation), IES (internal electrophilic substitution), or AMLA (ambiphilic metal ligand activation), which describe related mechanisms.
Abstract: The site-selective formation of carbon-carbon bonds through direct functionalizations of otherwise unreactive carbon-hydrogen bonds constitutes an economically attractive strategy for an overall streamlining of sustainable syntheses. In recent decades, intensive research efforts have led to the development of various reaction conditions for challenging C-H bond functionalizations, among which transition-metal-catalyzed transformations arguably constitute thus far the most valuable tool. For instance, the use of inter alia palladium, ruthenium, rhodium, copper, or iron complexes set the stage for chemo-, site-, diastereo-, and/or enantioselective C-H bond functionalizations. Key to success was generally a detailed mechanistic understanding of the elementary C-H bond metalation step, which depending on the nature of the metal fragment can proceed via several distinct reaction pathways. Traditionally, three different modes of action were primarily considered for CH bond metalations, namely, (i) oxidative addition with electronrich late transition metals, (ii) σ-bond metathesis with early transition metals, and (iii) electrophilic activation with electrondeficient late transition metals (Scheme 1). However, more recent mechanistic studies indicated the existence of a continuum of electrophilic, ambiphilic, and nucleophilic interactions. Within this continuum, detailed experimental and computational analysis provided strong evidence for novel C-H bond metalationmechanisms relying on the assistance of a bifunctional ligand bearing an additional Lewis-basic heteroatom, such as that found in (heteroatom-substituted) secondary phosphine oxides or most prominently carboxylates (Scheme 1, iv). This novel insight into the nature of stoichiometric metalations has served as stimulus for the development of novel transformations based on cocatalytic amounts of carboxylates, which significantly broadened the scope of C-H bond functionalizations in recent years, with most remarkable progress being made in palladiumor ruthenium-catalyzed direct arylations and direct alkylations. These carboxylate-assisted C-H bond transformations were mostly proposed to proceed via a mechanism in which metalation takes place via a concerted base-assisted deprotonation. To mechanistically differentiate these intramolecular metalations new acronyms have recently been introduced into the literature, such as CMD (concerted metalationdeprotonation), IES (internal electrophilic substitution), or AMLA (ambiphilic metal ligand activation), which describe related mechanisms and will be used below where appropriate. This review summarizes the development and scope of carboxylates as cocatalysts in transition-metal-catalyzed C-H functionalizations until autumn 2010. Moreover, experimental and computational studies on stoichiometric metalation reactions being of relevance to the mechanism of these catalytic processes are discussed as well. Mechanistically related C-H bond cleavage reactions with ruthenium or iridium complexes bearing monodentate ligands are, however, only covered with respect to their working mode, and transformations with stoichiometric amounts of simple acetate bases are solely included when their mechanism was suggested to proceed by acetate-assisted metalation.

2,820 citations

Journal ArticleDOI
01 Jun 2017-Cell
TL;DR: The core Wnt/β-catenin signaling pathway is described, how it controls stem cells, and contributes to disease, and strategies for Wnt-based therapies are discussed.

2,663 citations