scispace - formally typeset
Search or ask a question
Author

Jiann-Fuh Chen

Other affiliations: I-Shou University
Bio: Jiann-Fuh Chen is an academic researcher from National Cheng Kung University. The author has contributed to research in topics: Boost converter & Buck converter. The author has an hindex of 37, co-authored 246 publications receiving 7717 citations. Previous affiliations of Jiann-Fuh Chen include I-Shou University.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel maximum-power-point-tracking (MPPT) controller for a photovoltaic (PV) energy conversion system is presented, and a single-stage configuration is implemented, resulting in size and weight reduction and increased efficiency.
Abstract: A novel maximum-power-point-tracking (MPPT) controller for a photovoltaic (PV) energy conversion system is presented. Using the slope of power versus voltage of a PV array, the proposed MPPT controller allows the conversion system to track the maximum power point very rapidly. As opposed to conventional two-stage designs, a single-stage configuration is implemented, resulting in size and weight reduction and increased efficiency. The proposed system acts as a solar generator on sunny days, in addition to working as an active power line conditioner on rainy days. Finally, computer simulations and experimental results demonstrate the superior performance of the proposed technique.

714 citations

Journal ArticleDOI
TL;DR: This paper proposes transformerless dc-dc converters to achieve high step-up voltage gain without an extremely high duty ratio and develops a prototype circuit to verify the performance.
Abstract: Conventional dc-dc boost converters are unable to provide high step-up voltage gains due to the effect of power switches, rectifier diodes, and the equivalent series resistance of inductors and capacitors. This paper proposes transformerless dc-dc converters to achieve high step-up voltage gain without an extremely high duty ratio. In the proposed converters, two inductors with the same level of inductance are charged in parallel during the switch-on period and are discharged in series during the switch-off period. The structures of the proposed converters are very simple. Only one power stage is used. Moreover, the steady-state analyses of voltage gains and boundary operating conditions are discussed in detail. Finally, a prototype circuit is implemented in the laboratory to verify the performance.

694 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new high step-up dc-dc converter designed especially for regulating the dc interface between various microsources and a dc-ac inverter to electricity grid.
Abstract: This paper proposes a new high step-up dc-dc converter designed especially for regulating the dc interface between various microsources and a dc-ac inverter to electricity grid. The figuration of the proposed converter is a quadratic boost converter with the coupled inductor in the second boost converter. The converter achieves high step-up voltage gain with appropriate duty ratio and low voltage stress on the power switch. Additionally, the energy stored in the leakage inductor of the coupled inductor can be recycled to the output capacitor. The operating principles and steady-state analyses of continuous-conduction mode and boundary-conduction mode are discussed in detail. To verify the performance of the proposed converter, a 280-W prototype sample is implemented with an input voltage range of 20-40 V and an output voltage of up to 400 V. The upmost efficiency of 93.3% is reached with high-line input; on the other hand, the full-load efficiency remains at 89.3% during low-line input.

377 citations

Journal ArticleDOI
TL;DR: A novel high step-up dc-dc converter for fuel cell energy conversion that utilizes a multiwinding coupled inductor and a voltage doubler to achieve highstep-up voltage gain and high conversion efficiency.
Abstract: A novel high step-up dc-dc converter for fuel cell energy conversion is presented in this paper. The proposed converter utilizes a multiwinding coupled inductor and a voltage doubler to achieve high step-up voltage gain. The voltage on the active switch is clamped, and the energy stored in the leakage inductor is recycled. Therefore, the voltage stress on the active switch is reduced, and the conversion efficiency is improved. Finally, a 750-W laboratory prototype converter supplied by a proton exchange membrane fuel cell power source and an output voltage of 400 V is implemented. The experimental results verify the performances, including high voltage gain, high conversion efficiency, and the effective suppression of the voltage stress on power devices. The proposed high step-up converter can feasibly be used for low-input-voltage fuel cell power conversion applications.

343 citations

Journal ArticleDOI
TL;DR: In this article, a scheme of combination of voltage-controlled and current-controlled PWM inverters for parallel operation of a single-phase uninterruptible power supply (UPS) is proposed.
Abstract: In this paper, a scheme of combination of voltage-controlled and current-controlled PWM inverters for parallel operation of a single-phase uninterruptible power supply (UPS) is proposed. The voltage-controlled PWM inverter (VCPI) unit as a master is developed to keep a constant sinusoidal wave output voltage. The current-controlled PWM inverter (CCPI) units are operated as slave controlled to track the distributive current. The power distribution center (PDC) performs the function of distributing the output current of each active unit. In this proposed scheme of parallel operation, each of the units can be designed as nearly independent, and the CCPI units do not need a PLL circuit for synchronization. As a result, the parallel operation of UPS is easy to implement and to expand system capacity. For the purpose of illustration, the system, including three single-phase units which operate in parallel, is analyzed and experimental results are given. >

342 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The many different techniques for maximum power point tracking of photovoltaic (PV) arrays are discussed in this paper, and at least 19 distinct methods have been introduced in the literature, with many variations on implementation.
Abstract: The many different techniques for maximum power point tracking of photovoltaic (PV) arrays are discussed. The techniques are taken from the literature dating back to the earliest methods. It is shown that at least 19 distinct methods have been introduced in the literature, with many variations on implementation. This paper should serve as a convenient reference for future work in PV power generation.

5,022 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a method of modeling and simulation of photovoltaic arrays by adjusting the curve at three points: open circuit, maximum power, and short circuit.
Abstract: This paper proposes a method of modeling and simulation of photovoltaic arrays. The main objective is to find the parameters of the nonlinear I-V equation by adjusting the curve at three points: open circuit, maximum power, and short circuit. Given these three points, which are provided by all commercial array data sheets, the method finds the best I-V equation for the single-diode photovoltaic (PV) model including the effect of the series and parallel resistances, and warranties that the maximum power of the model matches with the maximum power of the real array. With the parameters of the adjusted I-V equation, one can build a PV circuit model with any circuit simulator by using basic math blocks. The modeling method and the proposed circuit model are useful for power electronics designers who need a simple, fast, accurate, and easy-to-use modeling method for using in simulations of PV systems. In the first pages, the reader will find a tutorial on PV devices and will understand the parameters that compose the single-diode PV model. The modeling method is then introduced and presented in details. The model is validated with experimental data of commercial PV arrays.

3,811 citations

01 Sep 2010

2,148 citations